THE U.S. DOT ESTABLISHED THE TRANSPORTATION SYSTEMS CENTER TO ADVANCE THE NATION’S STRATEGIC TRANSPORTATION GOALS AND THE PRIORITIES OF THE SECRETARY OF TRANSPORTATION.
The year 2020 marks the U.S. Department of Transportation (U.S. DOT) Volpe National Transportation Systems Center’s 50th year advancing transportation innovation for the public good. This publication celebrates our five decades of cross-modal partnerships and sustained commitment to public service.

Our golden anniversary is an opportunity to look back on the impact of our accomplishments, and look forward to a bright future. It is a transformative time. An anchor tenant in the heart of Kendall Square, Cambridge, we have witnessed and contributed to the amazing transformation of our neighborhood. When we opened in July 1970, the area was rather desolate with a few aging factories and the F&T Diner. Today, Kendall Square is considered “the most innovative square mile on the planet” and the U.S. DOT’s new, state-of-the-art facility and our future home is under construction.

U.S. DOT established the Transportation Systems Center—TSC—to support the nation’s strategic transportation goals and the priorities of the Secretary of Transportation. This followed an abrupt transition—the Center originally served as NASA’s Electronics Research Center, but the nation needed us to refocus on the complex transportation challenges at hand. In 1990, the Center was named for John A. Volpe, former U.S. Transportation Secretary and governor of Massachusetts.

The hallmark of the Volpe Center’s first 50 years is a top-notch, multidisciplinary, multimodal, and proactive workforce that tackles tough challenges and informs decision making across the transportation enterprise. During our startup decade, the Center established itself as a unique multimodal transportation system resource. We successfully transitioned from a traditional research and development engineering organization to a systems center able to address public and social policy, transportation economics, and technology advances.

During the 1980s, we expanded our sponsor base, transitioning to a more comprehensive approach that incorporated analysis and assessment of transportation systems for U.S. DOT and other agencies, including the U.S. Department of Defense. The 1990s were marked by widespread political, military, economic, and technological change and we adeptly shifted to meet new national priorities.

In the 2000s, we continued to support efforts to enhance transportation safety across all modes by applying our capabilities in safety management systems, cyber and physical security, and the resilience of the Global Positioning System. In the 2010s, we used our data and system engineering expertise in a decade defined by big data collection and analysis, and fast-spreading automation technologies. And in 2019, U.S. DOT and U.S. DoD renewed a long-standing Memorandum of Understanding regarding the Volpe Center, which ensures our continued collaboration and partnership across DoD commands and offices.

As a leader in transportation systems, analysis, and innovation, the Volpe Center continuously seeks synergy across our projects and works to transfer best practices and technologies throughout the transportation enterprise. Since its founding, the Volpe Center has convened government, private sector, and academic leaders on emerging and future transportation challenges.

On our 50th anniversary, we recognize our U.S. DOT partners and other dedicated colleagues who have been part of this amazing journey. We hope you will take this moment to appreciate the transportation innovations that together we have brought to the nation.

We look forward to collaborating with you over the next half-century and beyond.

Anne D. Aylward, Director
U.S. Department of Transportation
Volpe National Transportation Systems Center
Kendall Square – Cambridge, MA
January 2020
SINCE ITS ESTABLISHMENT ON JULY 1, 1970, THE U.S. DOT VOLPE CENTER HAS PROUDLY SERVED THE NATION, 9 PRESIDENTS, AND 17 SECRETARIES OF TRANSPORTATION.

U.S. Secretaries of Transportation

- Elaine L. Chao: 2017 – Present
- Anthony Foxx: 2013 – 2017
- Mary E. Peters: 2006 – 2009
- Claude S. Brinegar: 1973 – 1975
U.S. DOT Research, Development, and Technology Leadership

U.S. DOT Volpe Center Directors

Anne D. Aylward
2016 – Present

Robert C. Johns
2009 – 2016

Curtis J. Tompkins
2005 – 2007

Richard R. John
1989 – 2004
Director Emeritus 2004 – 2017

Louis W. Roberts
1984 – 1989

James Constantino
1976 – 1983

James C. Elms
1970 – 1974

Richard R. John
1989 – 2004
Director Emeritus 2004 – 2017

James Palmer
Administrator, RSPA
1977 – 1979

Hamilton Herman
Assistant Secretary for Systems, Development and Technology
1971 – 1975

Howard Dugoff
Administrator, RSPA
1979 – 1984

Robert Cannon
Assistant Secretary for Systems, Development and Technology
1971 – 1975

David K. Sharma
Administrator, RITA
2007 – 2009

Peter Appel
Administrator, RITA 2009 – 2011

James Palmer
Administrator, RSPA
1994 – 1997

Kelly S. Coyner
Administrator, RSPA
1998 – 2001

Ellen G. Engleman
Administrator; Research and Innovative Technology Administration (RITA) 2013 – 2014; Assistant Secretary for R&T 2014 – 2016

Gregory D. Winfree
Deputy Assistant Secretary for Research and Technology (R&T) 2019 – Present

Diana Furchtgott-Roth
Deputy Assistant Secretary for Research and Technology (R&T) 2019 – Present

Ashok Kaveeshwar
Administrator, RITA 2005 – 2006

Travis P. Dungan
Administrator, RSPA 1989 – 1992

Joel Szabat
Acting Under Secretary of Transportation for Policy 2019 – Present

M. Cynthia Douglass
Administrator, RSPA 1984 – 1989

Ellen G. Engleman
Administrator; Research and Innovative Technology Administration (RITA) 2001 – 2003

Kelly S. Coyner
Administrator, RSPA 2001 – 2003

Peter Appel
Administrator, RITA 2007 – 2009

Paul R. Brubaker
Administrator, RITA 2005 – 2006

Gregory D. Winfree
Administrator; Research and Innovative Technology Administration (RITA) 2013 – 2014; Assistant Secretary for R&T 2014 – 2016

Peter Appel
Administrator, RITA 2005 – 2006

Robert Cannon
Assistant Secretary for Systems, Development and Technology 1971 – 1975

Howard Dugoff
Administrator, RSPA
1979 – 1984

Hamilton Herman
Assistant Secretary for Systems, Development and Technology
1971 – 1975

Robert Cannon
Assistant Secretary for Systems, Development and Technology
1971 – 1975

Diana Furchtgott-Roth
Deputy Assistant Secretary for Research and Technology (R&T) 2019 – Present

Joel Szabat
Acting Under Secretary of Transportation for Policy 2019 – Present

M. Cynthia Douglass
Administrator, RSPA 1984 – 1989
Creation of the U.S. Department of Transportation

“A new Department of Transportation (DOT) is needed to bring together our transportation activities. The present structure—35 Government agencies, spending $5 billion yearly—makes it almost impossible to serve either the growing demands of this great Nation or the needs of the industry, or the right of the taxpayer to full efficiency and real frugality,” said President Lyndon B. Johnson in his January 1966 State of the Union Address. The U.S. DOT was established by an act of Congress that same year. It followed a sweeping reorganization of the federal government that elevated transportation to a cabinet-level post. This was done in an effort to ensure decisive national transportation policy development and to coordinate and manage national transportation programs.

Some of the major operating elements already existed—the Federal Aviation Administration (FAA), Federal Highway Administration (FHWA), the Urban Mass Transportation Administration (UMTA), the St. Lawrence Seaway Development Corporation (SLSDC), and the U.S. Coast Guard (USCG)1—and some elements were new—the Federal Railroad Administration (FRA), the National Highway Traffic Safety Administration (NHTSA), and of course, the Office of the Secretary.

The functions of what is now the Federal Motor Carrier Safety Administration (FMCSA) resided predominantly within the FHWA and the functions of today’s Pipeline and Hazardous Materials Safety Administration resided within the Office of the Secretary. The legislation also established the National Transportation Safety Board (NTSB) as an independent agency placed within the DOT for administrative purposes. By 1974, Congress reestablished NTSB as a completely separate entity. Worth noting, it wasn’t until 1981 that the Maritime Administration was transferred from the Department of Commerce to DOT, completing the consolidation started over a decade earlier.

1 On February 25, 2003, the U.S. Coast Guard became part of the Department of Homeland Security.
The Establishment of a New DOT Systems Center

Meanwhile, in September 1964, the National Aeronautics and Space Administration (NASA) opened the Electronics Research Center (ERC) in Kendall Square, Cambridge, Massachusetts. The new facility was expected to be a major part of the plan to bolster America’s space exploration program and support U.S. efforts during the Cold War. Located across the road from the Massachusetts Institute of Technology and two subway stops from Harvard University, ERC was as important to NASA as the Langley Research Center in Hampton, Virginia, or the George C. Marshall Space Flight Center in Huntsville, Alabama.

By 1968, ERC had more than 825 federal employees. In December 1969, President Richard Nixon announced ERC’s closure as part of a major shift in the nation’s space policy and in federal budget priorities. By this time, however, appreciation had developed for the unique technical expertise and forward-looking perspective that had been assembled in Cambridge.

In an effort to preserve the intellectual foundation that had been established, then-Secretary of Transportation John A. Volpe and members of a bipartisan New England Congressional delegation— including Congressmen Silvio Conte and Tip O’Neill and Senators Ted Kennedy and Edward Brooke—worked to preserve ERC as a national resource. The thinking at the time was that the nation was facing unprecedented transportation challenges and ERC’s highly sought after technical capabilities could be applied to complex multimodal issues including mass transit, air traffic flow, and transportation safety.

Facing page: In 1970, U.S. Secretary of Transportation John A. Volpe designated 30,000 acres near Pueblo, Colorado as a test track for high-speed air-cushioned trains. Some of the Center’s earliest work was performed at the track in support of FRA. (U.S. DOT image) **Above left:** The Apollo 17 launch, 1972. The Center was originally a NASA facility. When the mission shifted, many of the NASA federal staff stayed on to address the nation’s transportation challenges under U.S. DOT. (NASA/Courtesy of nasaimages.org) **Above right:** In March 1970, The New York Times quoted Massachusetts Senator Edward Brooke as saying, “It would have been a tragedy had this facility been used for other than research purposes.” (The New York Times)
In a March 1970 memorandum, Lee Dubridge, the science advisor to President Nixon, and Robert Mayo, the Director of the Bureau of the Budget advised that the transfer of ERC to U.S. DOT would both strengthen transportation research and development and support the responsibilities of the Office of the Secretary of Transportation to ensure coordination and management for intermodal and cross-modal activities.

On July 1, 1970, the ERC was transferred to U.S. DOT for one dollar and became the nation’s Transportation Systems Center, or TSC. Because the transfer occurred during a period of austere budgets, the Center did not receive a line item in the federal budget. The U.S. DOT’s newest asset was established as a unique, self-sufficient, fee-for-service federal organization, reporting to the Assistant Secretary for Systems Development and Technology.
“THIS CENTER WILL PROVIDE A FOCUSED TECHNICAL CAPABILITY FOR OUR DEVELOPMENT OF NEW TRANSPORTATION SYSTEMS ... EVEN MORE THAN THAT, WE BELIEVE THAT THIS CENTER WILL BE A TREMENDOUS ASSET TO THE DEPARTMENT AND WILL ENABLE US TO SPEED PROGRESS TOWARD MEETING THE RESEARCH OBJECTIVES AND THE PROGRAM OBJECTIVES OF THE DEPARTMENT.”

JOHN A. VOLPE
SECRETARY OF TRANSPORTATION
APRIL 1970
1970 – 2020

U.S. DOT VOLPE CENTER KEY CONTRIBUTIONS

Presidents

Richard M. Nixon
1969 – 1974
Gerald R. Ford
1974 – 1977
James Carter
1977 – 1981

Secretaries of Transportation

John A. Volpe
Claude S. Brinegar
Claude S. Brinegar
William T. Coleman, Jr.
Brock Adams
Neil Goldschmidt

- Simulating national air traffic flow
- Developing anti-hijacking aviation security screening systems
- Examining constraints and required characteristics for anticipatory sensing of impending automobile crashes
- Pioneering the use of alcohol breath analysis for transportation safety
- Examining the control and information system and operational requirements for the St. Lawrence Seaway
- Supporting introduction of advanced urban transit technologies
- Conducting the first federal study on automated fare collection
- Examining highway-rail grade crossing protection in high-density corridors
- Testing wake vortex sensing systems at major U.S. airports
- Conducting engineering tests and demonstrations of rail rapid transit vehicle technology
- Exploring the potential for flexicab services and innovative uses of taxis and jitneys for public transport
- Informing National Transportation Trends and Choices to the Year 2000
- Studying the impact of energy trends on the automobile industry
- Contributing to the financial analysis of the motor vehicle industry
- Developing the first-ever U.S. DOT-DoD Federal Radionavigation Plan
- Evaluating airport ground access capacity at commercial airports
- Assessing fire safety in a transportation setting
- Conducting noise assessments of transportation systems
- Analyzing ridership levels of the Morgantown Personal Rapid Transit System
Deploying groundbreaking air traffic management concepts including the Enhanced Traffic Management System
- Assessing the capability of the GPS to meet civil navigation requirements
- Examining transportation security issues and countermeasures
- Creating an assessment tool to evaluate the safety record of air carriers—both military and commercial
- Contributing to an aviation human factors research plan
- Assessing prospective safety hazards associated with commercial space launch activities
- Studying the influence of advanced communications on the future of transportation
- Exploring public-private partnerships for urban transportation
- Studying rail integrity and the behavior of propagating fatigue cracks
- Examining the implications of stalling on motor vehicle safety
- Evaluating the effects of mandatory seatbelt use laws on safety

Supporting development and implementation of the intelligent vehicle highway system program
- Studying the effect of the 65 mph speed limit on highway safety
- Assessing the use and design of flight crew checklists and manuals
- Evaluating the ridership, cost forecasts, and performance of federally funded transit projects
- Supporting DoD’s strategic mobility and logistics priorities
- Conducting a port needs study for the U.S. Coast Guard
- Contributing to Moving America: A Statement of National Transportation Policy

• Developing and installing a real-time communications and navigation system for the Panama Canal
• Assessing the crashworthiness of rail passenger equipment
• Laying the foundation for Amtrak’s all-electric Acela high-speed service
• Testing and analyzing commercial vehicle front and side collision warning systems and adaptive cruise control
• Developing the system to calculate aviation’s contribution to global fuel burn and emissions
• Enhancing the integrated model for prediction and analysis of aviation and highway traffic noise
• Implementing an integrated security plan for the U.S. Capitol area
• Contributing to a surface transportation vulnerability assessment
• Undertaking major environmental remediation at U.S. DOT and Superfund sites
• Supporting development of U.S. DOT’s policy architecture for transportation decision making
• Supporting White House National Science and Technology Council’s transportation initiatives
• Supporting U.S. DOT’s response to the September 11 attacks
• Performing groundbreaking research and analysis on GPS vulnerability
• Supporting installation of a communications-based train control system in Iraq
• Expanding the multinational maritime situational awareness network
• Designing and deploying a landmark Automatic Identification System-based data network on the St. Lawrence Seaway

► Advancing motor vehicle crash avoidance research
► Strengthening analysis of federal motor carrier safety programs
► Synthesizing data and information related to Electronic On-Board Recorders for reporting hours of service
► Assessing the U.S. Postal Service’s Alaska hovercraft demonstration project
► Supporting Intelligent Transportation Systems programs
► Contributing to Transportation Vision 2030

• Supporting the Next Generation Air Transportation System program
• Pioneering GPS spectrum interference protection
► Advancing safety of crude oil and ethanol by rail initiatives
► Supporting connected and automated vehicle research, evaluation, and planning
► Supporting high-risk motor carrier prioritization
► Providing analytical and engineering support related to High-Speed Intercity Passenger Rail service
► Bolstering development of the first-ever aviation CO\textsubscript{2} emissions standard
► Developing a national model to evaluate freight and fuel transport options
► Supporting global disaster relief efforts in Haiti and Japan in the aftermath of the devastating earthquakes
► Responding to natural disasters, including Superstorm Sandy
► Supporting development of Beyond Traffic 2045
Providing infrastructure and automated vehicle policy support, including AV 3.0

- Enhancing the Environmental Review and Permitting Process
- Applying machine learning methods to inform transportation safety decision making
- Assisting in the design and development of the technology for transmitting electronic logging device motor carrier data to safety officials

Advancing safe integration of new entrants into the National Airspace System

- Advancing data sharing across the aviation community through the System Wide Information Management system
- Informing potential changes to supersonic flight regulations
- Conducting GPS adjacent band compatibility assessments
- Supporting deployment of the Strategic Highway Research Program and its products
- Developing a first-ever National Long Range Transportation Plan for the National Park Service
- Responding to natural disasters including Hurricanes Harvey and Irma and the California wildfires

Preparing for relocation to a new U.S. DOT Volpe Center facility in Kendall Square, Cambridge, Massachusetts
During its startup decade, the Center’s multidisciplinary experts went to work on a number of the issues and challenges associated with the recently established U.S. DOT. There was a growing national concern about transportation safety and security, transportation-related noise and air pollution, and new technologies.

Getting to Work During Our Startup Decade

At this time, there were more than 52,000 annual motor vehicle traffic fatalities. The Center’s Alcohol Countermeasures Laboratory grew to become the premier laboratory testing and approving authority for alcohol-detection devices used by law enforcement.
and the transportation industry. In response to a number of high-profile airplane hijackings, the Center was closely involved in strengthening airport security and helped develop infrared radiation to detect concealed metal objects.

The Center continued to be at the forefront of emerging technologies including air-cushion and high-speed tracked vehicles, personalized rapid transit, anticipatory automobile crash sensors, grade crossing protection systems for passenger trains, aircraft wake vortex sensing systems, and microwave landing systems for aircraft. The Center also began its early work on noise abatement across the modes.

Becoming a Catalyst for Solutions to Complex Challenges

When the 1973 international oil embargo led to unprecedented inflation and an energy crisis, the country turned its attention to domestic energy independence and Congress passed the Energy Policy Conservation Act of 1975 which established the nation’s first Corporate Average Fuel Economy (CAFE) standards for passenger cars and light trucks. In support of NHTSA, the Center went to work and to this day continues to provide critical analytical support on the development of CAFE standards for cars and light trucks sold in the U.S.

Facing page, top: A theoretical driverless, rail-based freight system to improve efficiency, reduce road congestion, and decrease air pollution was visualized for U.S. operation. (U.S. DOT image)

Facing page, bottom: In support of NHTSA, the Center developed a miniature rotational mouthpiece accelerometer to measure the angular acceleration of a person’s head during a vehicle crash or sudden impact. (U.S. DOT image)

Above, left: The Center, in support of FAA, played a significant role in developing anti-hijacking aviation security screening systems, such as the use of infrared radiation to detect concealed metal objects. (U.S. DOT image)

Above, right: The Center supported the U.S. Coast Guard’s pollution abatement initiative by measuring diesel engine exhaust at the Boston Coast Guard station. (U.S. DOT image)

Right: The Center supported the Urban Mass Transportation Administration in evaluating electronically powered Automated Guideway Transit Systems. (U.S. DOT image)
During the 1970s, the Center convened automobile industry leaders for an important dialogue titled *Government, Technology, and the Future of the Automobile*. The next year, the Center contributed to the long-term assessment of the viability of the Chrysler Corporation, which informed the government’s Chrysler Loan Guarantee in 1979.

Federal decision makers increasingly needed to understand how new technologies would impact society and transportation system users. Throughout the 1970s, the Center developed and hosted workshops, conferences, and symposia that addressed a number of pressing issues, including rail grade crossing safety, ride quality for intercity maglev, high-speed rail, the design and development of automated transit vehicles, satellite-based air traffic management, and the environmental impacts of supersonic aircraft. In support of U.S. DOT, the Center also convened a major Climate Impact Assessment Symposium, with 38 nations represented.

The Center’s initial workforce was dominated by engineering disciplines, but over the decade widened to include social and behavioral sciences, such as economics, human factors, and operations research. The Center closed out the 1970s having fulfilled U.S. DOT’s initial vision, emerging as a major, innovative contributor to solving transportation challenges across modes and sectors.
In the 1980s, the Center’s workforce and technical expertise shifted in response to changing government policies and priorities. At this time, much of the Center’s work for U.S. DOT centered on research, development, and demonstrations of advanced technologies and new surface vehicle concepts. While safety remained the major departmental priority, national security became a renewed focus.

Focusing on Aviation Safety, Efficiency, and Economic Growth

There was a major increase in aviation-related work in support of the FAA during the 1980s. At the start of the decade, the Center supported development of the country’s first Federal Radionavigation Plan that met the requirements of civil and military users and delineated DOT’s responsibilities related to transportation safety and
the economy and DoD’s national security responsibilities—today the Department of Homeland Security (DHS) has been added as a signatory.

Aviation experts at the Center also developed and deployed groundbreaking air traffic management and control concepts for FAA. Major initiatives, such as the Enhanced Traffic Management System and Advanced Automation Systems relied on the Center’s extensive expertise in advanced information, communications, navigation, and surveillance technologies. The Center’s work in this area enhanced FAA’s ability to monitor and react to air traffic congestion both in real time and in the future.

In December 1985, a chartered plane crashed in Gander, Newfoundland, with more than 240 American soldiers aboard. The Center, in response to a joint request from FAA and DoD, carried out a technical review and found the plane was overloaded and there was a lack of safety protocol. The Center created a valuable aviation assessment tool to study the 1988 Aloha Air incident in which the plane experienced explosive decompression and structural failure in mid-flight. (U.S. DOT image)

Above: The Center developed an aviation assessment tool to study the 1988 Aloha Air incident in which the plane experienced explosive decompression and structural failure in mid-flight. (U.S. DOT image)

Above, right: Following the 1983 bombings of the Marine Corps barracks and the U.S. Embassy in Beirut, the Center’s security experts were consulted on the retrofitting of anti-blast structures to federal facilities. (State Department image) Right: The Center’s experts worked with FAA to advance air traffic management systems and theories. (U.S. DOT image) Facing page, top: Commercial breath-sensing technology is tested for NHTSA’s Alcohol Countermeasure Program. (U.S. DOT image) Bottom left: The Center worked closely with the U.S. Coast Guard on a comprehensive analysis of its service-wide command and control operations. The first area targeted for improvement was search and rescue. (Coast Guard image) Bottom right: For the FRA, the Center conducted studies of automated crossing gates at multiple sites in the Northeast to evaluate the extent of effective rail-highway grade crossing protection. (U.S. DOT image)
assessment tool to evaluate the safety record of carriers used by the military. The Center also adapted and improved that tool on behalf of FAA after a mid-air Aloha Airlines incident in 1988. Lending critical support to FAA’s National Aging Aircraft Research program, the Center undertook new work designed to prevent further accidents due to aircraft structural fatigue.

Strategic Mobility and Logistics

The U.S. military turned to the Center to enhance its strategic mobility and logistics capabilities, particularly following the devastating terrorist bombings against the Marine Corps barracks and the U.S. Embassy in Beirut. The Center expanded its national security support, including applying anti-blast concepts to federal facilities, such as U.S. State Department embassies and other critical infrastructure.

During the 1980s, DoD signed a formal agreement recognizing the Center’s value in transferring transportation technology between the civil and defense sectors. In addition, work transitioned to a more comprehensive approach that incorporated analysis and assessment of transportation systems. That led to the Center’s expertise being applied to critical transportation missions in federal agencies outside of U.S. DOT.

As the decade wrapped up, the Center contributed to extensive outreach activities related to future transportation issues and helped inform development of *Moving America*, a major statement of national transportation policy directed by Secretary of Transportation Samuel K. Skinner and, at the time, Deputy Secretary of Transportation Elaine L. Chao. The publication was unveiled by President George H.W. Bush in 1991.
The 1990s were marked by unprecedented global economic growth, the end of the Cold War, and the global spread of the Internet. The Volpe Center adeptly pivoted to meet new priorities and to develop innovative solutions to the nation’s transportation challenges. The Center was renamed the John A. Volpe National Transportation Systems Center at the dawn of the decade.

The Volpe Center’s primary activities reflected the widespread political, military, economic, and technological change underway. The Center’s work focused on major themes of national transportation policy: safety and security, mobility and the economy, and energy and the environment. The Volpe Center continued to expand its support of air traffic management improvements and tools for assessing the interdependency of aviation, noise, and emissions. Major new safety initiatives included railcar crashworthiness evaluations, vehicle crash-avoidance research, runway incursion reduction, motor carrier safety data collection and analysis, and risk analysis for transporting hazardous materials. A year-long study of Boston-to-NYC rail improvements for the FRA and the FTA led to infrastructure upgrades, electrification, and the introduction of Acela Express service that cut trip times and expanded capacity in the Northeast Corridor.

Developing Intelligent Transportation Systems (ITS) Programs

Following the passage of the landmark Intermodal Surface Transportation Efficiency Act of 1991, the Volpe Center became heavily involved in forming what would become a key U.S. DOT surface transportation activity: Intelligent Vehicles/Highway Systems, which evolved into today’s Intelligent Transportation Systems (ITS) and automated vehicle programs. The Center supported development of strategic program directions and, for NHTSA, performed safety evaluations of operational tests. Using video image processing technologies, the Center also directed an urban travel-time study for FHWA and for FTA examined the implementation status of advances in technology in the public transportation industry.

The Center also studied automotive displays and controls and future trends including automated fare collection. Recognizing that the future impact of these new technologies and services depended, in large part, on the public’s willingness to purchase and incorporate these
services into daily transportation activities, the Center worked in the area of benefits, evaluation, and costs and developed new ways to measure the impact of ITS deployments.

Growing International Expertise in GPS and Maritime Domain Awareness

The Volpe Center developed internationally renowned expertise in using Global Positioning System (GPS) satellites to support transportation and logistics needs of military and civilian users. The Volpe Center created the first Federal Radionavigation Plan (FRP) and was instrumental in developing and deploying new air traffic control systems. The FRP is the official source of positioning, navigation and timing (PNT) policy and planning for the federal government, and is today prepared jointly by DOT, DoD, and DHS every two years.

Throughout the decade, and to this day, the Center has been in the vanguard of developing and deploying state-of-the-art, easy-to-use, cost-effective vessel tracking networks that enhance maritime situational awareness in waterways around the world. The Volpe Center developed and installed systems for identifying and tracking commercial vessels on the St. Lawrence Seaway and the Panama Canal that are still in use. For the Seaway, the Center designed and deployed an Automatic Identification System-based data network, dramatically improving navigation safety and traffic management. Throughout

Facing page, top: Infrastructure improvements and electrification of the Boston-to-New York City Acela route. (U.S. DOT image) **Facing page, bottom:** For the FTA, the Volpe Center supported the design, development, and deployment of alternative fuel transit vehicles and infrastructure systems. (U.S. DOT image) **Right, top:** A Volpe-developed GPS-based system for tracking commercial vessels in the St. Lawrence Seaway to improve maritime situational awareness. (U.S. DOT image) **Right, middle:** On September 18, 1990, the Center was renamed in honor of the second U.S. Secretary of Transportation, John A. Volpe. Participating in the ceremony was then-U.S. DOT Deputy Secretary Elaine L. Chao. (U.S. DOT image) **Right, bottom:** The Center contributed to an understanding of the multimodal vehicle location and tracking capabilities of GPS. (U.S. DOT image)
the 1990s, Volpe Center engineers developed and installed a real-time Communications, Traffic Management and Navigation system in the Panama Canal, which resulted in improved situational awareness and a significant reduction in accidents.

Extending Critical Support to a Range of Partners

Beginning in the 1990s and continuing through the mid-2000s, Volpe Center experts provided key support on behalf of the Office of the Secretary of Transportation, to the White House Office of Science and Technology Policy and the National Science and Technology Council. The Volpe Center served as executive agent to a number of dynamic multiagency committees and contributed to a series of highly visible reports, including the first-ever national Transportation Science and Technology Strategy.

A growing number of federal agencies, challenged by issues related to transportation and the environment, looked to the Volpe Center for assistance. Volpe Center experts supported implementation of environmental policies for the U.S. Postal Service and contributed to a three-year demonstration program in which hovercraft were used to transport mail to remote villages in Alaska.

By mid-decade, the Environmental Protection Agency (EPA) urgently sought out the Volpe Center’s capabilities to lend technical assistance to provide sampling, site assessment, and analytical support to the EPA in accordance with a new Memorandum of Understanding between the two federal organizations. At the time, the national spotlight was on Libby, Montana and Stockton, Utah, two towns experiencing a large number of deaths and disease related to exposure to asbestos and other contaminants.

Preparation for a New Century

To support federal decision making and prepare for the new century, the Volpe Center continued to bring together global transportation experts during a series of high-profile outreach events that explored major transportation challenges. These included a special series at the start of the decade on Charting a New Course in Transportation; the First International Congress on New Information Technologies and Operations Research Methods in Transportation and Telecommunications, co-sponsored with MIT: Challenges and Opportunities for Global Transportation in the 21st Century; Transportation Opportunities for Technology Reinvestment in support of Secretary Federico F. Peña’s agenda to support national defense conversion priorities; and the Spirit of Innovation in Transportation Symposium, held on behalf of Secretary Rodney E. Slater prior to the turn of the new century.

Above: The Volpe Center worked with the U.S. Postal Service to study the technical, regulatory, ecological, and cultural complexities of delivering mail in Alaska by hovercraft. (U.S. DOT image) Facing page, top: Volpe’s Global Maritime Domain Awareness Program won a prestigious Innovations in American Government Award from Harvard’s Kennedy School of Government. (U.S. DOT image) Facing page, bottom: The Volpe Center helped to develop the Enhanced Traffic Management System (ETMS) for FAA. (U.S. DOT image)
Throughout the 2000s, the Volpe Center continued to provide key technical support and leadership on pressing national transportation priorities impacting safety, security, the environment, energy, and mobility. On September 10, 2001, the Volpe Center released a groundbreaking report on the vulnerabilities of GPS to intentional or unintentional interference. The report also found that the safety and economic risks of GPS vulnerability had been underestimated. Less than 24 hours later, the September 11 terrorist attacks happened, bringing into stark relief global concerns about the vulnerability of our nation’s critical transportation infrastructure, including GPS. Just hours after the attacks, Volpe Center staff provided technical support to the Federal Emergency Management Agency operations center in Washington, D.C.

Assessing and Solving Real-World Safety Challenges

After September 11, the Volpe Center conducted vulnerability risk assessments related to cargo and port security and intercity bus security, and analyzed the effects of catastrophic events on transportation system
management and operations. The Center also supported the U.S. Army, Transportation and Communications Sector in Iraq with the deployment of a microwave communications network for the Iraqi Republic Railways.

In supporting U.S. DOT safety objectives, the Volpe Center’s work moved from responding to and analyzing crashes to anticipating and avoiding them. The Volpe Center helped promote the Federal Motor Carrier Safety Administration’s nationwide commercial vehicle safety effort and broadened its multimodal understanding of unintended consequences from human-automation interaction. For FRA, the Volpe Center supported highway-rail grade crossing safety efforts and full-scale train-to-train crash energy management testing. For NHTSA, Volpe Center human factors experts evaluated driver-fatigue detection technologies along with multiple safety innovations, including road-departure crash warning systems. For Secretary Ray H. LaHood, Volpe Center experts also contributed to forming the U.S. DOT Safety Council. Chaired by the Deputy Secretary, the council continues as an important, multimodal forum for developing solutions to critical safety challenges.

Expanding New Navigation Technologies and Improving the Parks Experience

The Volpe Center’s decades of technical experience in assessing, developing, and deploying multimodal positioning, navigation, and timing systems were applied in a number of
programs, including Next Generation Air Transportation System or NextGen, Positive Train Control, ITS, and Maritime Safety and Security Information System (MSSIS).

Previous global maritime domain awareness work led Volpe Center experts to develop MSSIS, which provides data on the location of tens of thousands of vessels with a high degree of reliability, security, and data integrity. Today, MSSIS includes more than 70 nations. The MSSIS program was honored by the John F. Kennedy School of Government and received the Ash Institute’s prestigious Innovations in American Government Award.

On behalf of FAA and the National Park Service (NPS), Volpe Center experts initiated air tour management plans to reduce the intrusion of aviation activities, mainly noise, into national parks. Vital work continued on potential applications of fuel cells and electric batteries for FTA, assessment of alternative transportation modes for NPS, and the benefits and costs of transportation biofuels.

From 2000 to 2002, the Center held its New Dimensions in Transportation Leadership speaker series, bringing together transportation experts to discuss groundbreaking innovations. The Volpe Center also continued to convene Friends of Volpe forums, where visiting and returning experts discussed advances in automation and robotics, GPS vulnerability, advanced multimodal transportation weather services, aviation modeling and simulation needs and requirements, transportation decision making, information security and transportation, the future transportation workforce, and sustaining transportation innovation. The Center also supported the development of Secretary Mary E. Peters’ Transportation Vision for 2030, a guide for transportation research and investment decisions.

By the end of the decade, the Volpe Center was well-positioned to continue to expand its collaborative efforts with sponsors and the broader transportation sector to improve safety and security across the nation’s transportation systems.
Transportation innovation in the 2010s was increasingly defined by massive data collection, analysis, and fast-spreading automation technologies. The Volpe Center’s multidisciplinary automated vehicles team developed strategy, research, and policy approaches for automated vehicle projects across surface transportation modes. The Office of the Secretary of Transportation asked the Volpe Center to take the lead in developing Preparing for the Future of Transportation: Automated Vehicles 3.0. Released by Secretary Elaine L. Chao in 2018, it was the first federal automated vehicle guidance to take a multimodal approach.

At the start of the decade, the Volpe Center again began supporting the White House Office of Science and Technology Policy, working closely with NASA, FAA, and others to develop the Aeronautics Research and Development Plan, which stressed the importance of addressing enterprise-level issues in transforming the air space system. The Volpe Center carried out near- and long-term multidisciplinary systems research and assessment that informed policy decisions associated with NextGen and other future air transportation systems. Near the decade’s end, the Volpe Center was tapped by FAA to serve on a select multi-agency panel to review the safety of the Boeing 737 MAX.
Turning to Machine Learning to Improve Road Safety

Motor vehicle deaths remained a critical safety issue for U.S. DOT. According to 2018 estimates, 36,750 people were killed in motor vehicle crashes, while over 2.7 million were injured in motor vehicle crashes in 2017. Throughout the decade, with the evolution of active safety technology, Volpe Center engineers have been at the forefront of crash prevention—informing rulemaking, federal guidelines, and investment decisions on crash avoidance technology. Simultaneously, Volpe Center data experts, in support of the U.S. DOT undersecretary of transportation for policy, are leading the Waze Pilot Project, which is advancing U.S. DOT’s vision of integrating government data with big data from private companies to estimate crash risk and improve real-time reporting.

Driver behavior is a critical factor in nearly all road vehicle crashes. Volpe Center data science experts developed the skills and subject matter expertise needed to create a video reduction and analysis tool on behalf of the FHWA. Using machine learning and computer vision techniques, the tool can extract knowledge relevant to naturalistic driving research questions from dash cam video at a rate two orders of magnitude faster than a human analyst.

In support of FMCSA, the Volpe Center assisted in the design and development of the technology for transmitting Electronic Logging Devices (ELD) data to safety officials, and a software application—Electronic Records of Duty Status—to assist safety officials in viewing and analyzing that data. This supported implementation of a federal law requiring that trucks have ELDs that track on- and off-duty time for drivers.

Facing page: In support of the Office of the Secretary’s Safety Data Initiative, the Waze Pilot Project takes on a machine learning task with big data. (Source: ©123rf.com/Galina Peshkova)

Facing page, bottom: The Volpe Center developed SeaVision for U.S. Naval Forces Africa to enable governments to view and track vessel movements. (Image: Google Maps and U.S. DOT image)

Above, left: The Center was instrumental in developing the System Wide Information Management (SWIM) data services and infrastructure that allow airlines to share information with the FAA and airport operators. (U.S. DOT image)

Above, right: Low-speed automated shuttles are one novel vehicle class that the Volpe Center examined in a recent state-of-the-practice report. (U.S. DOT image)

Left: A photographic example of a helicopter noise exposure ‘footprint’ overlaid on the cockpit video used during pilot training to increase awareness of helicopter noise generation. (U.S. DOT image)
Expanding Analysis of Maritime Safety and Security Data

The Volpe Center continued to draw from its data and system engineering expertise to enhance transportation safety and efficiency and to expand global maritime domain awareness. Maritime safety experts created SeaVision, which lets governments view, track, and analyze vessel data in near real-time to improve the safety and security of the world’s oceans and waterways.

Increasing Capacity and Making Air Travel Safer, More Efficient, Greener

To improve air travel, Volpe Center experts were vital in developing, on behalf of FAA, the System Wide Information Management (SWIM) program, which improves data sharing across aviation using defined, standardized, secure, flexible, and scalable connections. Data sharing improves efficiency and reduces delays by providing common situational awareness and improved planning capabilities.

Volpe Center systems engineering experts also provided engineering and analysis, operations research, and associated information technology expertise to enhance aviation safety. They continued to provide technical and risk analysis expertise for aviation and aerospace challenges, and a large portion of the Volpe Center’s aviation safety management systems activity focused on designing, developing, and maintaining information systems used by FAA safety inspectors.

Also in support of FAA, the Center continued its longstanding efforts to better understand the behavior of wake turbulence and to recommend critical adjustments to aircraft separation standards and spacing criteria. As a result, some airports saw a marked increase in airport capacity and the industry reaped savings in fuel costs due to less time waiting on the tarmac.

In support of FAA, NASA, and the International Civil Aviation Organization (ICAO) Committee on Aviation Environmental Protection (CAEP), the Volpe Center led the design, development, maintenance, training, and user support of the Aviation Environmental Design Tool (AEDT). AEDT calculates noise, fuel burn, and emissions during ground and flight operations across various scales: individual flights, airport, regional, national, and global levels.

Strengthening Transportation System Resilience

The 2010s were marked by several major weather events, including Hurricane Harvey in 2017, which led to major flooding in the Houston area, and Hurricane Maria, which devastated Puerto Rico. Emergency response experts at the Volpe Center were deployed throughout the 2010s to coordinate large-scale transportation responsibilities that come with massive emergency response efforts, including from major storms. Two Volpe Center outreach initiatives—Beyond Bouncing Back and Transportation System Resilience—explored frameworks for addressing challenges related to increasing interdependencies among physical and...
cyber systems that underlie the critical infrastructure in the U.S.

U.S. DOT worked to develop a robust, nationally applicable model to quantify the direct and indirect costs these extreme weather events have on transportation infrastructure. The Volpe Center built on a coastal flooding project in Hampton Roads, Virginia, by integrating data, methodologies, and algorithms to support a new model that operates under a variety of transportation disruption scenarios. Ultimately, the tool will be replicable and usable across the nation and may be expanded to include additional threats.

Continuing a Rich Legacy of Looking Beyond the Horizon

Throughout the decade, the Volpe Center continued its legacy of bringing together leading transportation thinkers to address pressing challenges. The Center’s staff were key contributors to Beyond Traffic 2045, released by Secretary Anthony Foxx.

The work continued Volpe’s tradition of supporting Secretarial-level efforts to capture current and future trends in transportation. The Center had supported Secretaries Coleman, Skinner, and Peters on landmark documents examining emerging trends.

The Volpe Center also convened Transportation and the Economy, an outreach series, which considered future issues crucial to moving people and goods to remain competitive in the global economy. Reimagining Transportation and the Ongoing Transformation of the Global Transportation System delved into technology trends poised to dramatically change how we travel and deliver goods and services. The speaker series Transportation in the Age of Artificial Intelligence and Predictive Analytics convened experts in government innovation, vehicle automation, and logistics to consider the promise and potential of recent breakthroughs in machine learning and data analysis.

And at the end of the decade, Our New Mobility Future supported Secretary Elaine L. Chao’s innovation agenda and further explored novel transportation modes and the promise and pitfalls of our new mobility future.

Looking to the 2020s, Volpe Center experts stand ready to apply their cross-modal, multidisciplinary transportation expertise to solving the nation’s most pressing national and global transportation challenges.
THANK YOU

ON THE OCCASION OF OUR 50TH ANNIVERSARY, WE RECOGNIZE AND APPRECIATE OUR PARTNERS WHO HAVE SPONSORED OUR WORK AND COLLABORATED WITH US TO ADVANCE THE NATIONAL AND GLOBAL TRANSPORTATION SYSTEM. ★

U.S. DEPARTMENT OF TRANSPORTATION
Federal Aviation Administration
Federal Highway Administration
Federal Motor Carrier Safety Administration
Federal Railroad Administration
Federal Transit Administration
Maritime Administration
National Highway Traffic Safety Administration
Office of the Secretary of Transportation
Office of the Under Secretary for Policy
Office of the Assistant Secretary for Aviation and International Affairs
Office of the Assistant Secretary for Research and Technology
Bureau of Transportation Statistics
Intelligent Transportation Systems Joint Program Office
Transportation Safety Institute
Office of the Assistant Secretary for Administration
Office of the Chief Information Officer
Office of Drug & Alcohol Policy & Compliance
Office of Intelligence, Security and Emergency Response
DOT Safety Council
Office of Inspector General
Pipeline and Hazardous Materials Safety Administration
Saint Lawrence Seaway Development Corporation
Surface Transportation Board

OTHER FEDERAL AGENCIES
Millennium Challenge Corporation
National Aeronautics and Space Administration
National Capital Planning Commission
Panama Canal Commission

Presidio Trust
U.S. Access Board
U.S. Architectural and Transportation Barriers Compliance Board
U.S. Capitol Police
U.S. Department of Agriculture
Forest Service
U.S. Department of Commerce
National Oceanic and Atmospheric Administration
U.S. Department of Defense
Office of the Secretary of Defense
21st Theater Sustainment Command
266th Range Squadron
Air Combat Command
Air Mobility Command
Combat Systems & Combat Services Support
Defense Advanced Research Projects Agency
Defense Information Systems Agency
Defense Logistics Agency
Defense Threat Reduction Agency
Joint Chiefs of Staff
Joint Improvised-Threat Defeat Organization
Office of the Chief of Naval Operations
Office of the Secretary of Defense
Space and Naval Warfare Systems Command
Surface Deployment & Distribution Command
U.S. Africa Command
U.S. Air Force
Air Education and Training Command
Air Materiel Command
Air Mobility Command
Civil Engineer Center
Cryptologic Support Center
Fort Irwin (Edwards AFB)
Pacific Air Forces
U.S. Air Forces in Europe
U.S. Air Force Flight Standards Agency
U.S. Air Force Life Cycle Management Center
U.S. Air Force Reserve Command
U.S. Air Force Southern Command
U.S. Air Force Space Command
U.S. Air Force Special Operations Command
U.S. Air National Guard
U.S. Army
Aeromedical Research Laboratory
Combat Systems and Combat Services
Headquarters Department of the Army
U.S. Army G4
Office of the Secretary of the Army
U.S. Army Corps of Engineers
U.S. Army Forces Central Command
U.S. Army Intelligence & Security Command
U.S. Army Materiel Command
U.S. Army Office of the Program Manager, Saudi Arabian National Guard Modernization Program
U.S. Army Reserves
U.S. Army Tank-Automotive and Armaments Command
U.S. Army XVIII Airborne Corps
U.S. Marine Corps
Joint Logistics Systems Center
U.S. Navy
Africa Command
U.S. Naval Forces Africa
U.S. Naval Forces Central Command
U.S. Naval Forces Europe
U.S. Navy International Programs Office
Naval Air Systems Command
Naval Air Warfare Center Weapons Division
Naval Education and Training Security Assistance Field Activity
Naval Facilities Engineering Command
Naval Research Laboratory
Naval Sea Systems Command
Naval Supply Systems Command
Naval Surface Warfare Center
Office of the Chief of Naval Operations
Commander, Navy Region Japan
U.S. Northern Command
U.S. Southern Command
U.S. Transportation Command
Directorate of Acquisition
Surface Deployment and Distribution Command
U.S. Department of Energy
Bioenergy Technologies Office
Office of the Secretary of Energy
Sandia National Laboratories

Through the years, the U.S. DOT’s Volpe Center has worked collaboratively in support of U.S. DOT, other federal agencies, state and local governments, other public authorities, private organizations, and foreign countries.
Vehicle Technologies Office
Western Area Power Administration
U.S. Department of Health and Human Services
Office of the Secretary
U.S. Department of Homeland Security
Federal Emergency Management Agency
Science and Technology Directorate
Transportation Security Administration
U.S. Customs and Border Protection
U.S. Coast Guard
U.S. Department of the Interior
Bureau of Indian Affairs
Bureau of Land Management
Bureau of Reclamation
Fish and Wildlife Service
National Park Service
Alaska Region
Midwest Region
Washington Support Office
Southeast Region
U.S. Department of Justice
U.S. Department of Labor
U.S. Department of State
U.S. Department of the Treasury
Bureau of Engraving and Printing
U.S. Environmental Protection Agency
Office of Environmental Information
Office of Solid Waste & Emergency Response
U.S. Food and Drug Administration
U.S. Government Accountability Office
U.S. General Services Administration
U.S. Nuclear Regulatory Commission
U.S. Postal Service
U.S. Social Security Administration

STATE AND LOCAL
California High-Speed Rail Authority
Cape Cod Regional Transit Authority
Chicago Metropolitan Agency for Planning
City of Baltimore, MD
City of Boston, MA
City of Cambridge, MA
City of Chicago, IL
City of Colorado Springs, CO
City of Flagstaff, AZ
City of Los Angeles, CA
City of New York, NY
City of San Francisco, CA Municipal Transportation Agency
City of St. George, UT
City of Stockton, UT
City of Washington, DC
Delaware Department of Transportation
Fairfax County Department of Transportation
Houston-Galveston Area Council, TX
Illinois State Board of Education
Lower Manhattan Development Corporation
Manchester-Boston Regional Airports
Maryland State Highway Administration
Massachusetts Bay Transportation Authority
Massachusetts Department of Transportation
Massachusetts Port Authority
Metropolitan Transportation Authority Bus Company, NY
Metropolitan Washington Council of Governments
Miami International Airport
New York State Department of Transportation
New York State Energy Research and Development Authority
New York State Thruway Authority
North Carolina Department of Transportation
Orange County Transportation Authority
Oregon Department of Transportation
Pennsylvania Department of Transportation
Pitkin County, CO
Port Authority of New York & New Jersey
State of Arizona
State of California
State of Delaware Department of Transportation
State of Florida Department of Transportation
State of Georgia
State of Maine
State of New Mexico
State of Maryland
State of Washington
Town of Southampton, NY
Tri-County Metropolitan Transportation District of Oregon
Washington Metropolitan Area Transit Authority

INTERNATIONAL
AirServices Australia
Civil Aviation Authority, UK
COCATRAM (Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, Panama)
Defence Science & Technology Laboratory (UK)
DFS Deutsche Flugsicherung GmbH
Dutch Ministry of Transport
International Civil Aviation Organization
Japan International Transport Institute
NAV CANADA
Province of Ontario, Canada
Transport Canada
United Kingdom Ministry of Defence
World Bank

ACADEMIA
Harvard University
John F. Kennedy School of Government
Medical College of Wisconsin
Pennsylvania State University
Rutgers University
University of Alabama
University of Florida
University of Maryland
University of South Florida
University of Wisconsin
Wake Forest University Health Sciences
The MITRE Corporation
Wright State Applied Research Corporation

NON-PROFIT
Alliance of Automobile Manufacturers
American Association of State Highway and Transportation Officials
American Concrete Pavement Association
American Public Transportation Association
Columbia River Pilots
Columbia River Regional Maritime Security Coalition
Maureen & Mike Mansfield Foundation
National Academy of Sciences
National Association of City Transportation Officials
National Motor Freight Traffic Association, Inc.
The MITRE Corporation
Woods Hole, Martha’s Vineyard and Nantucket Steamship Authority

COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENTS
Astronics DME Corporation
Cisco Business Systems/Internet Business Solutions Group
Federal Express
Her Majesty The Queen In Right of Ontario as Represented By the Minister of Transportation
Hewlett-Packard Company
Kollman, Inc.
Massachusetts Institute of Technology
University Research Foundation, Maryland Advanced Development Laboratory
Rockwell Collins, Incorporated
Silicon Graphics Federal Incorporated
Tufts University
U.S. Department of the Interior National Park Service; Cape Cod National Seashore; Wentworth Institute of Technology; Electric Transit Vehicle Institute
University of Massachusetts Amherst

U.S. DOT VOLPE CENTER
Five Decades

The U.S. Department of Transportation (U.S. DOT) established the Transportation Systems Center (TSC) in 1970 to serve as a federal resource positioned to provide world-renowned, multidisciplinary, multimodal transportation expertise on behalf of U.S. DOT operating administrations, the Office of the Secretary and other federal and non-federal organizations. For fifty years the Volpe Center’s extensive cross-modal partnerships have led to innovative solutions that advance national and global transportation systems for the public good in steps with the nation’s strategic transportation goals and the priorities of the Secretary of Transportation. In 1990, the TSC was renamed in honor of John A. Volpe, former U.S. Transportation Secretary and governor of Massachusetts.

Subject Terms
- John A. Volpe National Transportation Systems Center
- Volpe Center
- U.S. Department of Transportation
- Kendall Square, Cambridge
- 50th Anniversary
- 50 years
- transportation history
- transportation innovation
- strategic goals
- cross modal
- transportation safety
- partnerships
- multimodal
- mass transit
- aviation
- surface transportation
- rail
- maritime
- public policy
- transportation research
- economics
- resilience
- automation
- thought leadership.

Report Details
- **Title**: Five Decades
- **Authors**: U.S. Department of Transportation’s John A. Volpe National Transportation Systems Center
- **Performing Organization**: U.S. Department of Transportation
- **Report Date**: October 2019
- **Report Type**: Final report
- **Report Number**: DOT-VNTSC-
- **Sponsoring/Monitoring Agency Name(s) and Address(es)**: U.S. Department of Transportation, Office of the Secretary, 1200 New Jersey Ave, SE, Washington, DC 20590
- **Supplementary Notes**: Prepared under the direction of Ellen Bell, Director of Strategic Initiatives for Research and Innovation. Contributors: Research: Susan Dresley, Librarian; Editing, writing, production: Clark Merrefield, Nathan Grace; Art Director: Philip Thornton
- **Distribution/Availability Statement**: This document is publicly available at https://rosap.ntl.bts.gov/
- **Number of Pages**: 32
- **Price Code**: Unlimited

Security Classification
- **Security Classification of Report**: Unclassified
- **Security Classification of This Page**: Unclassified
- **Security Classification of Abstract**: Unclassified

Distribution Code
- **Distribution Code**: Unlimited