

Pre-Sandy Modeling of Storm Surge Impact on the NYC Metro Region's Transportation Infrastructure, Validation by Sandy, and Post Sandy Resilience Issues.

Tuesday Nov 19, 2013 12:00-12:45PM

Klaus H. Jacob

Lamont-Doherty Earth Observatory & School of International and Public Affairs, Columbia University jacob@ldeo.columbia.edu

Key Points Upfront (1)

- Pre-Sandy Storm Surge Modeling of NYC Metro Region's Transportation System was Performed for NYS via the ClimAID Project to Assess the Risks from Climate Change (CC) & Sea Level Rise (SLR), the projections for which were produced by NPCC (NYC Panel on Climate Change).
- Findings: Risks will increase significantly due to:
 - Accelerating SLR of ≈ + 6 ft by 2100 (90-percentile) above 2000 sea level, plus more & faster SLR later !
 - SLR Combined with (a) Nor'easter winter (extra-tropical) storms, and (b) Hurricanes (tropical cyclones) will ever more often & more severely flood the coastal Region's Infrastructure, thereby increasing by 2100 annualized risks by factors up to ~30, unless mitigated.
 - Increases in severe rain events (cause street and subway floods)
 - Increases in severe heat waves (affect power, health risks & operational costs)

Key Points Upfront (2): <u>Recommendations:</u>

• City, State, Federal & Private Transportation Operators of all modes need to take into account robust CC and SLR projections for all capital spending projects.

• FEMA flood maps need to be updated showing flood elevations for 100 and 500-year recurrences. To these current base elevations, the projected SLR needs to be added.

• Transportation systems need to be designed/retrofitted to make them adaptively resilient by adding to current base flood elevations amounts of SLR commensurate with the *expected lifecycle* of systems / components.

• Until the systems are engineered to be CC resilient, robust operational emergency plans and temporary protection measures must be planned, designed, financed, implemented, tested, and readied for use on short notice.

Long-Standing Common Problems and Past Trial Solutions: Flash Flooding - Subway as Overflow Sewer - Raised Ventilation Grates – Self Closing Gates - Permeable Pavements

Many Excellent Studies & Reports, but Limited Action & Adaptation \$\$'s invested prior to SANDY, although post-SANDY some are now in the pipeline.

Warmer Oceans expand, Land based Ice Caps melt; both cause Sea Level Rise

Flooded Subway and Under-River Tunnels, Lower Manhattan, 1% Flood (length overflow)

Flooded Under River Tunnels, Midtown, 1% Flood + 2' SLR (length overflow)

Flooded Under River Tunnels, Harlem River Crossings, 1% Flood + 4' SLR (length overflow)

T90 (days) = Max {D, E, L|P>0} + Max {P, A, R} ≥ 1

	1	2**	3	4	5
	TYPE OF DELAY		1%/y BFE	BFE +2ft	BFE +4ft
1	Surge Duration, D⁺⁺		≤1	≤1	≤1
2	Restore Power, E		≤1	≤1.5	≤2
3	Logistics Set-Up, L P>0		≤1	≤2	≤3
4	Max{D, E, L}		≤1	≤2	≤ 3
			Т 9 0	Т 9 0	Т 9 0
5	FACILITY	LCE / Zi (ft)	Max{P,A,R }	Max{P,A,R }	Max{P,A,R }
6	Lincoln Tunnel*	22.6*/Z5=9	$\{0,0,0\}$ T = 1	{0,0,1} T=1	{0,0,1} T = 2
7	Holland Tunnel*	12.1*/Z5=9	{0,0,0} T = 1	{0,0,1} T=1	{3/2/6} T = 9
8	Queens-Midtown T.	9.5/Z2=11	{1/1/1} T = 2	$\{4,2,4\}$ T = 6	{6,2,7} T=1 0
9	Brooklyn-Battery T.	7.5/Z1=9	{2/1/2} T = 3	{5,3,6} T = 6	{6,3,7} T=1 0
10	PATH System	9.9/Z5=9	{0,1,1} T = 2	{6,3,7} T = 9	{7,3,8} T=1 1
11	LIRR/Amtr ERvr 42 nd Str T	7.9/Z2=11	{6,3,10} T=11	{6,3,11} T=13	{6,3,12} T=15
12	NJTHudsonTubesPennSt	8.9/Z5=9	{5,3,7} T = 8	{7,3,11} T=13	{7,3,12} T=15
13	NJT ARC Tunnel** *	11.5/Z5= 9	$\{0,0,0\}$ T = 1	$\{0,0,0\}$ T = 1	{5,2,7} T=1 0
14	LIRR 63 rd StrE-River>GCT	11.6 /Z2=11	$\{0,0,0\}$ T = 1	{7,3,11} T=13	{8,3,10} T=13
15	to GCT via Steinway T.	9.9/Z2=11	{6,3,10} T=11	{7,4,11} T=13	{8,5,12} T=15
16	NYC Subway System	≥5.9/Z5=9	{7,5,20} T=21	{8,6,23} T=25	{9,7,26} T=29
17	MNR Hudson Line along Harlem River (SpuytenDvl.Stn.)	6.6/Z4=8	$\{0,2,3\}$ T = 4	{0,3,6} T = 8	{0,4,9} T=1 2
	Bridge Access Ramps+ to				
. 18	MarineParkw-Rockaway	6.9/Z8=9	$\{0,0,0\}$ T = 1	$\{0,1,1\}$ T = 2	$\{0,1,2\}$ T = 4
19	CrossBayBrdChnlRockaw.	6.9/28=9	$\{0,0,0\}$ I = 1	$\{0,1,1\}$ I = 2	$\{0,1,2\}$ = 4
20	i nrogsneck Bronx Whitestone	8.9/Z1=14	$\{0,0,0\}$ T = 1	$\{0,1,1\} = 2$	$\{0,1,2\}$ I = 4
22	RFK (Triboro)	13 9/73-2=10	$\{0,0,0\}$ T = 1	$\{0,1,1\} = 2$	$\{0, 1, 2\} = 4$
23	Verrazano-Narrows	7.6/Z5=9	$\{0,0,0\}$ T = 1	$\{0,1,0\}$ T = 2	$\{0,1,0\}$ T = 2
24	Airports: JEK	10.6/Z7=8	$\{0,0,0\}$ T = 1	$\{0,1,1\}$ T = 2	$\{1,3,4\}$ T = 6
25	LaGuardia*	10.0*/Z2=11	{2,2,3} T = 3	$\{3,2,4\}$ T = 4	{3,2,6} T = 8
26	Newark	9.2/Z5a=8	{0,0,0} T = 1	$\{0,1,2\}$ T = 3	$\{0,2,3\}$ T = 5
27	leterboro	3.9/Z5s≤8	{0,1,1} T = 2	$\{0,2,2\}$ T = 3	$\{0,2,3\}$ T = 5
28	Marine Ports:		Information currently not available		
29			Scenario 1	Scenario 2	Scenario 3
30	190min to T90max (days):		1 to 21	1 to 25	2 to 29

Estimates of the Number of Days Contributing to T90, the Time Needed to **Restore various NYC Metro Region Transportation** Systems to ~ 90% Functionality after a 100-year coastal flood storm at current sea level and with +2 and +4ft SLR, respectively. (Note: without **Adaptation Measures!)**

ClimAID Study Chapter 9: Transportation, Jacob et al. 2011 ClimAID Study: Chapter 8 – Transportation. (Jacob et al. December 2011)

 What is the expected direct damage from the 100yr flood to the transportation infrastructure ?
 ~ \$ 10 Billion

 How long will it take for the various components of infrastructure to have their services restored ?
 ~ 3 weeks (at ~ \$ 4 B/day =>)

• What will be <u>potential</u> economic losses from the transportation / utility outages and extended restoration times ?

~ \$ 50 B (+ Losses to Building Stock)

NPCC >ClimAID 2011: Identify Options for Solutions: Example: <u>Subway</u> System:

 In flood zones, seal ventilation street grates, replace passive 'open' ventilation with forced 'closed' ventilation. Requires additional ventilation fan plants, and \$\$!

2. Flood gates at vulnerable entrances; or berms / levees: *"Taipei-Solution"*- Go up before you step down !

 Costs? Engineering designs getting gradually underway, Our Estimate: at least 25% of the expected avoided losses: in excess of \$12B for integrated below-ground subway & RR

Or: Build barriers to protect the entire NY Harbor and Estuary. But is this an effective and sustainable solution ?

3 Barriers; or 1 big & 1 regular. Is this cost-beneficial & sustainable ?

3 Basic Modes of Adaptation:

- Protection
- Accommodation

• Strategic Retreat

mostly for Infrastructure I for high-rise buildings I for residential assets

Past Missed Opportunities: Example – WTC – Reconstruction Site:

Questions (Presented to PANYNJ in 2007):

Can the West-Tub Flood? Can the East Tub Flood? For which Storm Surge Elevations?

How will Flooding affect PATH System? • Hudson Tunnels • Stations / Tracks / Control Systems • New Transportation Hub? • For how Long ?

Will Flooding of NYCT Subway System(s) Affect / Connect with PATH & WTC facilities?

If Answers to Above are YES:

What Sealing-Off Options Exist ?

What Pumping Facilities are Planned ? Where ? Capacity? Reliability ?

Is a Levee System || to West Street Feasible? Up to what Height? How long would it be effective, given SLR.

NPCC-Recommended Adaptation Steps

MTA Storm Preparations, Downtown Subway Grates / 148thSt Subw. Tunnel / Penn Station LIRR yard

A STRONGER, MORE RESILIENT NEW YORK

The City of New York Mayor Michael R. Bloomberg 43 deaths... 6,500 patients evacuated from hospitals and nursing homes... Nearly 90,000 buildings in the inundation zone... 1.1 million New York City children unable to attend school for a week... close to 2 million people without power... 11 million travelers affected daily... \$19 billion in damage...

A STRONGER, MORE RESILIENT NEW YORK

NYC SIRR Report, June 11, 2013

High-Water Events in Lower Manhattan

East River Crossings Before and After Sandy

NYC SIRR Report, June 11, 2013

*Note: Bus bridges and HOV requirements were in effect on Nov. 2

Source: NYCDOT

Major Vehicular Bridge and Tunnel Closures After Sandy

Source: NYCDOT, MTA, and Port Authority of NY & NJ

Temporary "Bus Bridges" (Non-Stop Bus Service) After Sandy

Flooded Under River Tunnels, Harlem River Crossings, 1% Flood + 4' SLR (length overflow)

Sandy eerily verified ClimAID Impact & Cost Projections: but with 2 Remarkable Exceptions:

(1): Temp. Barrier at 148th Str. Harlem River Tunnel prevented flooding of subway lines between Manhattan & Bronx

(2): MTA removed sensitive signal & control systems from most tunnels that were forecast to flood, reinstalled post Sandy the signals unharmed by salt water, saved 1 to 2 weeks of recovery time and hence saved NYC's economic losses probably in the order of \$10B or more.

Risk Assessment: Impact of Climate Change on Transportation Major Risk Moderate Risk Minor Risk										
	Scale of Impact									
Hazard	Today	2020s	2050s	Comments						
Gradual										
Sea level rise				Some protection required, but most infrastructure is above future sea level						
Increased precipitation				Minimal impact						
Higher average temperature				Minimal impact						
Extreme Events										
Storm surge				Increased flooding of key at-grade and underground infrastructure as storms worsen						
Heavy downpour				Flooding of underground infrastructure possible during heaviest downpours						
Heat wave				Movable infrastructure (bridges, switches) could be impacted, as well as safety/comfort on subway platforms INDIRECT: reduced electrical supply reliability impacts many aspects of infrastructure						
High winds				General damage to infrastructure possible, as well as impact on aviation						

Source: NYC SIRR Report, June 11, 2013

Risk Assessment: Impact of Climate Change by Category of Transportation Asset Major Risk Moderate Risk Minor Risk												
Asset Impacts												
Hazard	Roads, Bridges, and Vehicular Transportation	Ferries and Marine Transport	Tunnels and Subways	Rail (includes above- ground subways)	Airports							
Gradual												
Sea level rise												
Extreme Events												
Storm surge												
Heavy downpour												
Heat wave												
High winds												

Note: This chart excludes increased precipitation and higher average temperature because these are expected to have minimal impact on the transportation system

Citywide Ferry Study

Existing and Proposed Select Bus Service Corridors

Conclusions / Suggestions for the Region (1 of 2):

- 1. Make time-dependent risk-based Benefit/Cost Assessments using updated Probabilistic Flood Maps and Flood Vulnerabilities as a Function of SLR (i.e. for various time horizons according to expected asset life times) until optimal, adaptive resiliency pathway is found, while also accounting for changing Physical and Social Asset Configurations and Vulnerabilities.
- 1. Develop jointly with Public & Private Sector Regional SLR Adaptation Policy/Strategy & Regional SLR Land Use **Plans** that balance the merits from Temporary Protection, with Medium-Term Protection and Accommodation to rising waters, with Long-Term Sustainable Managed Retreat (Horizontal and Vertical) to relative safety - by combining Risk-Based Landuse and Transit Oriented Urban Design, Accessibility, Insurance Pricing, Rezoning, **Codes & Eng. Standards Improvements, Financial and Tax** Incentives, Buy-Out Trust Funds, with Market-Driven Risk Averseness while taxing SLR-risk-prone Developments.

Conclusions / Suggestions for the Region (2 of 2):

- 3. Incorporate the CC information & Probabilistic Risk Estimates for Various Time Horizons into all strategic planning and capital-spending decisions.
- 3. Use each CC + SLR Challenge as Opportunity for regular Infrastructure and Urban Renewal. The costs just for the NYC metro region alone will be upward of \$100 Billion for the next few decades, and upward of \$30 Billion for the Transportation sector alone. But not investing in these resilience measures will be more expensive by factors of 4 to 10 in incurred direct and economic losses combined.
- Ensure robust interim Operational Emergency and Business Continuity Plans until assets can be engineered to be CC, SLR and storm surge resilient with an acceptable hazards target of better than 10⁻⁴/yr to *minimize* impact and losses, and/or allow for expedient recovery.

