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Greenhouse Gases

Argon, 0.9%

Water Vapor, 0.25%, and

Carbon Dioxide, 0.04% \

Nitrogen, 78%

The orange sliver (can you see it?) makes the difference between a mean
surface temperature of -18°C and of 15°C.
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Carbon Dioxide Content is Increasing
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Carbon dioxide concentrations from ice cores (green dots) and direct

measurements (blue curve)

Source: IPCC Assessment Report 5 (Chapter 6)



Annual Mean Global Mean Surface Temperature (°C)

Global Mean Surface Temperature and CO2
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Change in Earth’s Total Heat Content
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Total amount of heat from global warming that has accumulated in Earth's climate system
since 1961, from Church et al. (2011) (many thanks to Neil White from the CSIRO for
sharing their data).
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http://www.skepticalscience.com/graphics.php?g=46


Supercomputers Not Needed to
Understand This



Svante Arrhenius,
1859-1927

“Any doubling of the percentage of carbon dioxide in the air
would raise the temperature of the earth’s surface by 4°C; and
if the carbon dioxide were increased fourfold, the temperature
would rise by 8°C.” — Viirldarnas utveckling (Worlds in the
Making), 1906

Latest estimate from IPCC (2013): 1.5-4.5°C


http://upload.wikimedia.org/wikipedia/commons/6/6c/Arrhenius2.jpg
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MIT Single Column Model
(Can be run on a laptop)

Single Column Model Results
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Radiative forcing (W/m°)

Projections
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Radiative Forcing of the

6 - Representative Concentration
Pathways (RCPs). The light grey
area captures 98% of the range in
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Temperature change relative to 1986-2005 [K]

Sources of uncertainty in projected global mean temperature

—— Observations (3 datasets)
[ JInternal variability

Bl \Viodel spread

I RCP scenario spread

[ IHistorical model spread
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Image credit: IPCC Fifth Assessment Report



Estimate of how much global climate will warm as a result
of doubling CO.: a probability distribution
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1 2
Source: 100000 PAGEOQO9 runs

Sl

4.64

5.0%

3 4
Degrees C

ClimateCost

Chris Hope, U. Cambridge
courtesy Tim Palmer

. SENS

Minimum 1.24
Maximum 6.91
Mean 3.01
Median 2.87
Std Dev 0.866
Skewness 0.7393

10% 2.00
25% 2.35
75% 3.53
90% 4.21

Values 100000
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Reflects post-IPCC knowledge as well as IPCC AR4.


CO, Wil Likely Go Well Beyond Doubling

Projected CO2 Ievels for IPCC EITIIEEIDH scenarios
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IPCC 2007: Doubling CO, will lead to

an increase in mean global surface Ermission z R ]
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Large Risks in the Tall of the Distribution

Increase in mean
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Termperature anamaly

Heat Waves
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High vs Low Temperature Records

<€ 2011- 2.7:1

1950s 60s 70s 80s 90s  2000s

rrrrr d
highs

rrrrr d
lows

1.09:1 0.77:1 0.78:1 1.14:1 1.36:1 2.04:1 ratios




Sherwood and
Huber, PNAS, 2010

Adaptation Limit:
Maximum
Tolerable Wet
Bulb
Temperature

12° increase in
mean global T




Hydrological Extremes Increase with
Temperature

Floods



Blizzards







Severe Thunderstorms




Tornadoes




Hail Storms




Allstate ratio of losses to premiums

Alistate: Effect of CAT (non-earthquake, non-hurricane) on the Combined Ratio
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Hurricanes




Potential Intensity: Maximum
sustainable surface wind speed Iin
a given thermodynamic
environment (sea surface
temperature and atmospheric
temperature profile)




Annual Maximum Potential Intensity (m/s)
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What Climate Parameters
- Determine the Tropical
Cyclone Frequency?




Global Tropical Cyclone Frequency, 1980-2013
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Sea Surface Temperature Scaled to Observed Hurricane
Power Dissipation, 1980-2011

Predicted Power Dissipation
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Compare to Observed Storm Maximum Power

Dissipation
Predicted vs Observed Atlantic Power Dissipation
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Looking Ahead:
Using Physics to Assess
Hurricane Risk




Our Approach to Downscaling Tropical Cyclones

J Step 1: Seed each ocean basin with a very large number
of weak, randomly located vortices

~ » Step 2: Vortices are assumed to move with the large
scale atmospheric flow in which they are embedded

J Step 3: Run a coupled, ocean-atmosphere computer
model for each vortex, and note how many achieve at
least tropical storm strength; discard others

2 Step 4: Using the small fraction of surviving events,
determine storm statistics.
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50 MIT Synthetic (various colors) and 8 Historical Hurricanes
(lavender) Affecting New Haven, Connecticut




Peak Wind during Event
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Track number 130
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Point wind speed (knots)

Track number 130
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Storm Surge Simulation

SLOSH model
(Jelesnianski et al. 1992)
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Given the storm wind and pressure fields (which is estimated from the Holland parametric pressure model) we can simulate the surge. Surge simulations with high resolution are computationally intensive, so to make it possible to simulate accurate surges for our large synthetic storm sets, we apply the two hydrodynamic models with girds of various resolutions in such a way that the main computational effort is concentrated on the storms that determine the risk. First, we apply the SLOSH model, using a mesh with resolution of about 1 km around NYC to simulate the surges for all storms and select the storms that have return periods, in terms of the surge height at the Battery, greater than 10 years. Second, we apply the ADCIRC simulation, using a grid mesh with resolution of ~100 m around NYC, to each of the selected storms. Then, we apply another ADCIRC mesh with resolution as high as ~10 m around NYC, for a set of the most extreme events, to check if the resolution of our ADCIRC grid is sufficient and if needed to make statistical correction to the results. 
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Storm surge and storm tide (surge and tide) return level curves for the Battery, NYC, for the 1981-2000 NCAR/NCEP climate conditions (5000 synthetic storms). Astronomical tide and nonlinear interaction between surge and tide are accounted for statistically.


Downscaling of AR5 GCMSs

» GFDL-CM3

» HadGEMZ2-ES
» MPI-ESM-MR
» MIROC-5

» MRI-CGCM3

Historical: 1950-2005, RCP8.5 2006-2100
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Global annual frequency of tropical cyclones averaged in 10-year blocks for the
period 1950-2100, using historical simulations for the period 1950-2005 and the
RCP 8.5 scenario for the period 2006-2100. In each box, the red line represents
the median among the 5 models, and the bottom and tops of the boxes represent
the 25" and 75 percentiles, respectively. The whiskers extent to the most
extreme points not considered outliers, which are represented by the red + signs.
Points are considered outliers if they lie more than 1.5 times the box height above
or below the box.



Change in Track Density
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Peak Wind Speed (Knots)

Return Periods based on GFDL Model

Peak Wind within 100 km of New Haven, CT
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GCM flood height return level
(assuming SLR of 1 m for the future climate )
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Then we calculate the flood height (including surge, tide, and sea level rise) return level for the four climate models, assuming a sea level rise of 1 m for the future climate, for the Battery, NYC. These results show that the combined effects of storm climatology change and sea level rise will greatly shorten the flood return periods for NYC and, by the end of the century, the current 100-year surge flooding may happen less than every 30 years, with CNRM and GFDL prediction to be less than 10 years, and the 500-year flooding may happen less than every 200 years, with the CNRM and GFDL prediction to be 20-30 years. 


2> Our climate is generally warming, owing to
~an increase In greenhouse gas

concentrations

» Much of the tangible risk of climate change is
In changing occurrence of extreme weather
events



S Of climate change

weather extremes vary a great deal
depending on type of event and model
projections

2 Heat waves become more frequent, and
cold waves less so

2 Incidence of floods increases fairly rapidly

i. 2 Incidence of drought also increases rapidly



2 Very little currently known about response
of severe thunderstorms to climate change

2 Frequency of intense (destructive)
hurricanes projected to increase

2 Hurricane-related flooding exacerbated by
rising sea level, increased incidence of
very strong storms, and enhanced rainfall




Global Tropical Cyclone Power Dissipation
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Change in Power Dissipation




Integrated Assessments

with Robert Mendelsohn, Yale



MIROC Model

Current
= Future

Probability Density of
TC Damage, U.S.
East Coast

Probability density
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MIROC Model

Current
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Damage Multiplied by
Probability Density of
TC Damage, U.S.
East Coast
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Mendelsohn et al., 2012
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Climate change impacts on tropical cyclone damage by region
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Changes in income will increase future tropical cyclone
damages in 2100 in every region even if climate does not
change. Changes are larger in regions experiencing faster
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- What is Causing Changes in Tropical
Atlantic Sea Surface Temperature?




10-year Running Average of Aug-Oct Northern Hemisphere
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Difference ("C) from 19651-1990
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Tropical Atlantic SST(blue), Global Mean Surface
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Mann, M. E., and K. A. Emanuel, 2006. Atlantic hurricane trends linked to climate change. EOS, 87, 233-244.




Best Fit Linear Combination of Global Warming

and Aerosol Forcing (red) versus Tropical Atlantic

0.6
Tropical Atlantic Sea Surface Temperature

N\

o
i
T

o
N
T

o
T

1R

Global Surface T + Aerosol Forcing

TEMPERATURE ANOMALY ( “C)

—

1880 1900 1920 1940 1960 1980 2000
YEAR
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Application to the Climate of the Pliocene

3 Present-day TC tracks
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