What are the Challenges and Payoffs for UAS to Operate in the National Airspace?

By David Barstow, Aviation Management Associates
In November 2013, the FAA released its Roadmap to integrate Unmanned Aircraft Systems (UAS) to fly in the National Airspace System (NAS). It outlines nine major areas of research and a total of 34 goals to be achieved over the next decade and beyond. In addition to the Roadmap, a UAS Comprehensive Plan was published that summaries a coordinated government agency plan that describes the overarching, interagency goals, objectives, and approach to integrating UAS into the NAS.

In September of this year, a technical report titled, Unmanned Aircraft System (UAS) Service Demand 2015–2035 Literature Review & Projections of Future Usage, was prepared for the United States Air Force through support from the John A. Volpe Transportation Systems Center that assessed the opportunities, risks, and challenges affecting UAS forecast growth from 2015 to 2035 attendant to the future development and deployment of Unmanned Aircraft Systems (UAS) within the National Airspace System (NAS). A link is provided on page 67.

The single goal of the comprehensive technical report is to provide readers a better understanding of UAS to support better decisions related to UAS development, deployment, and operations. The report provides an overview of historical achievements, early developments and modern development for UAS. It discusses the mission needs or applications, economic considerations and challenges for the government defense and public markets as well as the commercial market.

The technical report includes comprehensive recommendations for future research considerations and approaches to address the many challenges that may stifle or threaten the introduction and growth of UAS in the NAS.

Analysis of four key areas was instrumental in developing sound forecasts for UAS demand over the period 2015 to 2035. These areas are: technology, mission needs, economics, and existing or anticipated challenges to routine UAS use in NAS operations.

1. Technology

The global defense industry is currently investing heavily in research and development, which has led to the development of technologies to enhance the endurance, survivability, and usability of UAS. The paper identifies five major UAS subsystem technologies that are seen as enablers for both military and commercial Unmanned Aircraft Vehicle (UAV) market development and growth:

- Airframe
- Power plants
- Sensors
- Communication
- Command, and control (C3) systems
- Information technologies (IT)

Each of these subsystems will be driven at varying paces, depending upon research and development investments coupled with the financial viability of emerging markets. Some of these technologies – such as IT – are rapidly developing because of the high growth in user demand and the development of web-based services.

Some of the many mission characteristics and requirements that will drive
The Air Force also expects that its large unmanned aircraft fleet will grow to about 750 vehicles, leaving the bulk of the Air Force fleet modernization focused on optionally piloted vehicles satisfying broad mission needs.

future UAS development include:
• Lightweight (composite structures)
• Long endurance
• High payload carrying capacity
• Interchangeability between standardized payload modules

Continuing microminiaturization, sensor fusion, C3 standardization, and infrastructure integration will result in smaller and more capable UAVs. They will also be more efficient and less costly. Increase capability at less cost drives market growth.

2. Missions
While technology enables, it is the cost effective delivery of capabilities that meets needs and in turn, will drive UAS markets. Identification of mission needs is foundational to forecasting future types and number of UAS. The report considers major mission requirements to continue to be in intelligence, surveillance, and reconnaissance (ISR), as well as new areas such as stores delivery, cargo transport, search and rescue, and pilot augmentation. Mission need is tightly coupled with technology, meaning technological developments are mission enablers in the same way that mission requirements drive technological changes.

Historically, the UAV have been primarily utilized by the military in war zones and within restricted airspace in the U.S. As such, UAV designs did not fully consider longevity or robustness, which is important for operation in the NAS. New domestic missions and vehicles present a new paradigm. The UAS Service Demand 2015–2035 anticipates expansion of UAS into a myriad of public, private, and commercial missions routinely using the national airspace alongside other air traffic. The integration of UAS has highlighted both operational needs and public concerns associated with UAS operations.

3. Economics
A business model tells the story of the business and how the elements of that business work together to produce value to the customer. The model also describes how the business differentiates itself from other competition in the same product area. The report relies upon research from a Massachusetts Institute of Technology team, who in 2005 examined the business models of the largest 1,000 U.S. firms. The research team found that business models were a better predictor of operating income than existing business segment classifications. If this is the case, then a business model can be used to test a range of approaches for generation of revenue for UAS applications. If a business is to receive financing to start up (the case with nearly all civil applications using UAS) then a good business model must consider customers, cost, revenue, and the value proposition for the product or service being delivered. A November 2013 article in the Washington Post, As drones evolve from military to civilian uses venture capitalists move in, by Olga Kharif, validates this approach.

4. Challenges
At the moment, there are major constraints to the use of UAS due to the underlying number and complexity of issues regarding operating UAS in the NAS. To this point, initiatives to promote and facilitate the use of UAS in civilian applications have been relatively uncoordinated and ad hoc. Another challenge is pilot training and certification. Future users of UAS have to prove that they can operate (piloted from the ground or autonomously) safely. The military has been leading the training and certification process, including rules, pilot certification processes, and training and simulation requirements. The military anticipates leading the future of UAS operation training and certification into the NAS.

While existing restrictions and procedures for the operation of UAS in the NAS mitigate safety concerns for other air traffic and persons property on the ground, the Federal Aviation Administration (FAA) is currently developing regulations for safe and routine UAS operations in the civilian NAS. Additional challenges to UAS market growth for operations within U.S. include: regulatory,
• Policy, and procedural issues
• Environmental issues (noise and emissions)
• Safety
• Social issues (privacy and nuisance concerns)

Unresolved social issues can doom the most promising technologies. One of these key areas is the perceived concern for privacy. Even when the technical and safety concerns are overcome, there is still a growing challenge to widespread use of UAS in the NAS brought on by the public’s privacy concerns. This is due to the predominant belief that use for UAS is only for intelligence, surveillance, and reconnaissance (ISR).

Most stakeholders, including FAA, recognize the time and cost challenges these policies and procedures place in the way of achieving UAS benefits. As a result, efforts are underway through the RTCA Special Committee 228 to address a myriad of issues associated with integration of UAS into the NAS. Timely deployment of UAS into the NAS is dependent upon reducing, circumventing, and eliminating these and other challenges.

Three Market Forecasts for UAS: Methodology, Development, and Trends

In order to provide realistic forecasts of future UAS markets, the “S” curve model of technology-driven market development over the last 50 years is utilized. The “S” curve is represented by a number of key phases in product development and deployment starting with technological innovation. If this innovation is coupled with emerging wants, needs, or desires, market growth follows predicated upon economic benefits balanced against costs. Further insight into the S-curve is generated from one of the most commonly used tools known as the Diffusion of Innovations Model that identifies and analyzes the different phases of growth, saturation, and decline of a certain product, technology, new idea, or innovation. This valuable model helps forecasters make long term plans and design strategy around existing product portfolios and new product launches.

A number of short-range forecasts that address Department of Defense (DoD) planned investments in UAS are performed. Coupled with past acquisition trends, these forecasts provide an opportunity to lay a foundation for future UAS development and deployment in Federal, state, and local government organizations as well as a potential commercial market. For other UAS markets identified by this report, the DoD baseline is biased to the forecast effects of emerging technologies as well as anticipating new technological innovations in areas of aircraft: airframes, power plants, sensors, C3 systems, and information technology and processing. A robust commercial market contributes to cost effective innovation as well as economies of scale that bring economic benefits back to the DoD.

Part of the effort to identify UAS technologies and market trends has been a five-year data collection and analysis effort that serves to track the developments and deployments of UAS around the world. This 1,500-entry database archives media reports, press releases, and documentation from government and industry sources and provides insight into UAS trends that are forecast to drive non-DoD UAS markets. The database is segmented to address: accidents and incidents; Congressional activities; regulatory activities, including policy and procedures; missions; vehicles; training, research and development; and economic and contract issues.

Ultimately, all of the above factors are considered and evaluated to develop the U.S. UAS forecasts 2015 to 2035. These forecasts are viewed as most probable given the political, economic and regulatory environment to date. Validation of these forecasts, which rely upon regression analysis and other statistical forecast methods, will eventually come as the non-DoD markets begin to develop and UAS is deployed within the NAS.

Forecast for DoD UAS

The DoD expects its inventory of aircraft, both conventionally manned as well as unmanned, to grow to 27,000 vehicles by 2035, including 8,000 traditional aircraft, 14,000 UAS of all sizes and types, and 5,000 new aircraft with UAS technologies for pilot augmentation or optional pilot replacement. This growth is paced by the introduction of new and more capable unmanned or optionally manned aircraft accomplishing broader DoD missions. The DoD projects that the percentage of unmanned vehicles will UAS Service Demand 2015-2035 grow from 25 percent in total today to 70 percent of the DoD fleet by 2035, including new, optionally manned or pilot augmented aircraft.

The Air Force currently operates about 5,400 aircraft. Less than 5 percent of this total represents unmanned aircraft, and none are optionally manned aircraft. The Air Force projects that its fleet could grow to some 5,800 aircraft by 2035, with almost 60 percent optionally manned or unmanned. For example, replacement of the traditional long-range manned bomber fleet is under discussion to be replaced by an initial new fleet of 80 optionally manned aircraft at a cost of some $100 billion. The Air Force also expects that its large unmanned aircraft fleet will grow to about 750 vehicles, leaving the bulk of the Air Force fleet modernization focused on optionally piloted vehicles satisfying broad mission needs.

The shift in the Navy and Marine’s assets toward optionally manned and unmanned aircraft will likely parallel that of the Air Force, although the Navy will also employ smaller UAS Carrier Launched Airborne Surveillance and Strike System (UCLASS) shipboard tactical vehicles for surveillance and weap-
A number of proposed research needs and considerations attendant to advancing routine UAS usage in the NAS in response to the aforementioned challenges are presented below. These proposed research areas are offered for consideration to UAS stakeholders, both government and industry alike. Seventeen specific recommendations were made focused on the FAA while five were focused for the DoD and the FAA to consider and inviting participation from industry stakeholders, where appropriate. A more expansive discussion of many of these considerations is provided in the body of the report.
Conclusion
UAS operations are expected to surpass manned aircraft operations, for both military and commercial domains by 2035. The technologies needed to support this transformation are developing rapidly, costs are diminishing, and applications are growing. However, there are considerable challenges to UAS market growth for operations within U.S. that must be overcome to realize the full economic and social benefits of UAS; these challenges primarily include regulatory, policy, and procedural considerations; social issues, such as privacy and nuisance concerns; environmental issues, such as noise and emissions; and safety.

The report mentioned in this article, Unmanned Aircraft System (UAS) Service Demand 2015 – 2035 Literature Review & Projections of Future Usage, was prepared for the United States Air Force through support from the John A. Volpe Transportation Systems Center. The pdf can be downloaded at http://1.usa.gov/1aKtQv8.

Don’t Miss it!

59th Annual Conference and Exposition
ATCA

Your 3 Most Productive Days of the Year
September 28 - October 1
www.atca.org/59annual