Cyber Security is a National Issue

- 2010 Protecting Cyberspace as a National Asset
- PDD63 – Critical Infrastructure
Homeland Security Presidential Directive 7 (HSPD-7) along with the National Infrastructure Protection Plan (NIPP) identified & categorized U.S. Critical Infrastructure into the following 18 Critical Infrastructure & Key Resources Sectors

1. Agriculture & Food
2. Banking & Finance
3. Chemical
4. Commercial Facilities
5. Dams
6. Defense Industrial Base
7. Emergency Services
8. Energy
9. Government Facilities
10. Information Technology
11. National Monuments & Icons
12. Nuclear Reactors, Materials, & Waste
13. Postal & Shipping
14. Public Health & Healthcare
15. Telecommunications
16. Transportation
17. Water
18. Critical Manufacturing*
Examples of Infrastructure Interdependencies

The John A. Volpe National Transportation Systems Center
U.S. DOT strategic goals

• Safety/Security
• State of good repair
• Economic competitiveness
• Livable communities
• Environmental sustainability
Volpe Center mission, vision and capabilities

Mission and vision

• A world-recognized Federal center of excellence and leader in transportation
• Trusted enabler of critical improvements to transportation and logistics systems
• Leader in government, industry, and academic cooperation

Unique capabilities

• Institutional knowledge of the global transportation systems
• Awareness of Federal responsibilities, objectives, and activities in the public interest
• Experience with the full spectrum of technologies and disciplines relevant to transportation system improvements
Centers of Innovation at the Volpe Center

• Multimodal Systems Research and Analysis
• Safety Management Systems
• Environmental and Energy Systems
• Freight Logistics and Transportation Systems
• Physical Infrastructure Systems
• Communication, Navigation, Surveillance and Traffic Management Systems
• Human Factors Research and System Applications
• Advanced Vehicle and Information Network Systems
Volpe Center Cyber Security Life Cycle Support

- Security Policy
- Privacy
- Security Architecture
- System Prioritization
- Risk Assessment
- Certification & Accreditation
- Remediation & Implementation
- Security Test & Evaluation
- Awareness & Security Training
- Intrusion Detection & Response
- Design

RISK MANAGEMENT PROGRAM

John A. Volpe National Transportation Systems Center
Volpe Center Cyber Security Life Cycle Support

FAA
- National Airspace System (NAS) Vulnerability Assessment for PDD-63
- ~ 50 C&A’s and Penetration Testing for the National Airspace System
- GPS Vulnerability Assessment
- Cyber Security Awareness Training & Workshops
- Cyber Security Incident Response Center (CSIRC)
- Airborne Network IA Support (Security/Safety R&D studies, RTCA SC-216)
- B-787 Security Certification and Cyber Training Support
- Aerospace Network Security Simulator
- WebCM – C&A, Operational Support, Configuration Management Tools
Volpe Center Cyber Security Life Cycle Support

USAF/TSWG
• Joint USAF/Civil AN R&D Plans for Secure Airborne Networks
• AN Workshops (US and UK)
• Electronic Flight Bag Security Use Case/Risk Assessment
• Commercial Derivative Aircraft Cyber Papers

OTHER
• NASA – Airborne Network IA Research Studies
• TSA – Transportation Worker Identification Card C&A
• Maryland Intelligent Transportation System Cyber Security Assessment
• DOT Intelligent Transportation System JPO - Trust Model for Intellidrive
Volpe Center Supporting DHS Control System Security Program in Transportation

- Control system inventory
- Threat and vulnerability assessments
- Research and simulation laboratory
- National Cyber Incident Response Plan
- Real-time reporting concepts
- Outreach, training and professional capacity building
- Transportation Control System Security Roadmap
- International Collaboration
Planned Engagement of Modes

Program Planning
Control System Inventory
Assessments
Research & Simulation Lab
NCIRP/Real-time Requirements
Outreach/Training/PCB
Transportation Roadmap/International

John A. Volpe National Transportation Systems Center
Volpe Center Supporting DHS Control System Security Program in Transportation

- Major players
 - DHS CSSP Joint Working Group, conferences & workshops
 - DHS TSA Joint Working Group
 - American Public Transportation Association, Amtrak, Association of American Railroads, Union Pacific, FTA, FRA
 - Surface Transportation/Public Transportation ISACS,
 - FAA, Highway, Pipeline, Maritime
 - Many others
Transportation Systems Are Becoming Increasingly Dependent on Information Technology
14 Year Old Boy Derails Polish Trams with Modified TV Remote

Source: Telegraph.co.uk, 11 January 2008
Future Positive Train Control Systems
Intelligent Transportation System Vulnerabilities: Variable Message Signs on Highways Hacked

Hacking instructions were available on i-hacked.com.
Traffic Management System Vulnerabilities

Traffic signal computer crash & power failure in Maryland delays thousands.

Disgruntled employee hacked into traffic control computer in Los Angeles; shut down signals at key points causing delays for four days in 2006.

Traffic management centers vulnerable to malware and hacking
Cyber-physical Systems in Automobiles Vulnerable

Key vehicle systems controlled by hacker teams from U. of Washington and UCSD

Tire sensor hacking kit developed by University of South Carolina and Rutgers U.

Source: MIT Technology Review, August 10, 2010
Future Intelligent Transportation System: Intellidrive

- E-payment Transactions
- V2V Safety Messages
- Signal Phase and Timing Information
- V2V Crash avoidance
- Probe Data

“The Network”

Opportunity for Innovation

Real Time Network Data

Opportunity for Innovation

John A. Volpe National Transportation Systems Center
Today’s Air Traffic Control System
NextGen Air Traffic Control System

“NextGen: Security = Safety”
Coordinated Collaboration Among All Stakeholders

- Designers & manufacturers
- Equipment suppliers
- System integrators
- University & government researchers
- Testing organizations
- Users
- Infrastructure operators
- Standards organizations
- Regulators

Example: Airborne Network Security
Today’s Automated Maritime Systems

- Today’s maritime environment includes automation throughout our nation’s ports
 - Automated entry systems
 - Wireless cargo tracking
 - Driverless cranes and other vehicles
Driverless Vehicle

• Hamburg Germany. Driverless vehicle moving 40’ container to automated storage crane.
Crane Accident

- Oakland, CA. Dropped cargo container too early. Is this a result of a Control System failure?
Vessel Balance Accident

- Liberia. Vessel storage usually executed by Control System “Bay Plan”. Several onboard ship systems are Control Systems.
Hazardous Cargo

- Guam. Water activated cargo. Not all hazardous cargo is coded correctly resulting in inaccurate manifest.
Navigation Malfunction

- Oakland, CA. Steering or navigation malfunction.
Dry-dock Malfunction

- Dubai. Opened sea gate while workers were under vessel resulting in 27 deaths and the loss of 2 vessels.
Pipeline Explosions
Next Steps = Collaboration

• We would like to communicate and learn from all of you
 – What’s been done?
 – What are the…
 • Lessons learned and Methodologies

• For Transportation
 – Control system inventory
 – Threat, vulnerability and assessments
 – Research and simulation laboratory
 – National Cyber Incident Response Plan
 – Real-time reporting concept
 – Outreach, Training and Professional Capacity Building
 – Transportation Roadmap
 – International Collaboration
Contact Information

David Sawin
Program Manager, Information Assurance (Control Systems)
617 494 2206
David.sawin@dot.gov

Rod Cook
Chief, Intermodal Infrastructure Security and Operations
617 494 2203
Rodney.cook@dot.gov