Lateral Protective Devices (Side Guards) and Vulnerable Road User Safety

Alexander Epstein, PhD 17 November 2022

Notice

- This document is disseminated in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.
- The information in this and in related materials represents the best technical judgment of U.S. DOT Volpe Center staff based on their independent and objective technical analysis and expertise, and is not to be misconstrued as statements of U.S. DOT policy or guidance.
- The U.S. DOT Volpe Center, as a U.S. DOT agency, does not "certify" or "approve" lateral protective device products or services. Compliance with any applicable specifications or regulations is based on self-certification by the manufacturer.

Outline

Context

- Prevalence and precedents
- Safety effectiveness findings
- Technology demonstration
- Retrofit feasibility
- Types, benefits, costs, and aerodynamic factor

U.S. Department of Transportation

Large Truck Safety Context U.S. NYC 4% Vehicle Fleet 12% 7% **Pedestrian Fatalities Pedestrian Fatalities** 32% 11% **Bicyclist Fatalities Bicyclist Fatalities** 569 truck-VRU fatalities in 2019

https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/2022-01/FMCSA%20Pocket%20Guide%202021.pdf

6

https://www.nyc.gov/html/dot/downloads/pdf/nyc_ped_safety_study_action_plan.pdf; https://www.nyc.gov/html/dot/downloads/pdf/bicyclefatalities.pdf

Based on this:

Countermeasure:

Prevalence and precedents of lateral protection devices

Prevalence and precedents of VRU side guards

Prevalence and precedents of lateral protection devices

- Most widely used standard is UN Regulation 73
- 1 kN static force stiffness test

SIDE VIEW

LPD best practice specification

Voipe The National Transportation Systems Center

Lateral Protective Device Best Practice Specification

DOT-VNTSC-OSTR-16-05

This document is intended to be used by (1) public or private medium/heavy-duty truck fleets considering adding lateral protective devices (LPDs), also known as side guards; (2) jurisdictions or customers that require LPDs through policy or procurement; (3) manufacturers of LPDs; and (4) truck manufacturers and dealers.¹ The best practice specifications below are based on previously published Volpe reports (Reports DOT-VNTSC-DCAS-14-01 and DOT-VNTSC-SFMTA-16-01) and may be referred to as the "Volpe LPD best practice specification." This document can be used as a basis for design, production, testing, review, and procurement of LPDs and LPD-equipped vehicles.

I. Dimensional and strength criteria

An LPD meets the strength requirement if it is capable of withstanding 450 pounds (2 kilonewtons) of force applied perpendicularly to any part of its surface by the center of a flat, circular plate of diameter no greater than 8.7 inches (220 mm), such that the deflection of the loaded side guard measured at the center of the plate does not exceed (1) 5.9 inches (150 mm) anywhere, or (2) 1.2 inches (30 mm) in the rearmost 9.8 inches (250 mm). A manufacturer may also demonstrate compliance using a valid engineering calculation, such as finite element analysis.²

2. Additional dimensional criteria for rail-style LPDs

Α 13.8 inches (350 mm) max 11.8 inches (300 mm) max C 13.8 inches (350 mm) max 3.9 inches (100 mm) min 11.8/3.9 inches (300/100 mm) max* 11.8 inches (300 mm) max

*The gap between the LPD's leading edge and the wheel, wheel arch, or other permanent vehicle structure should not exceed 11.8 inches (300 mm). A turned-in vertical bar connecting the forward ends of the horizontal rails should be incorporated if the forward gap exceeds 3.9 inches (100 mm). The bar need not be turned in or can be omitted if the distance is less than 3.9 inches (100 mm).

Class 3 - 10,001 to 14,000 lbs

lass 4 - 14,001 to 16,000 lb

Class 5 - 16,001 to 19,500 lbs

3. Vehicle weight threshold and flexibility of design

LPDs can be installed on Class 3 and above vehicles, which have a gross vehicle weight rating (GVWR) of 10,000 pounds (4,536 kg) and higher.

Acceptable LPD protection can be provided by any combination of vehicle body, fuel tanks, tag axles, tool boxes, or purpose-built side guards comprising a smooth surface flush with the vehicle sidewall, meeting the dimensional and strength specifications set forth above.

¹This document was prepared for the Office of the Assistant Secretary of Research and Technology

² A third option for demonstrating strength compliance may be type approval by the United Kingdom Department for Transport Vehicle Certification Agency or other recognized side guard homologation with equal or greater stringency. An LPD with such type approval that also meets the Volpe dimensional criteria may be considered to meet the Volpe best practice specification

www.volpe.dot.gov/LPDs

-

https://rosap.ntl.bts.gov/view/dot/55683

Truck Side Guard Adoption in North America

Safety effectiveness

- ~50 publications accessed and reviewed
- I I studies presenting specific data generally indicate side guard effectiveness at mitigating crashes with VRUs
 - Effective for passing/overtaking maneuvers, improving with reduced ground clearance
 - Three studies[†] and Volpe <u>demonstration</u> indicate effective for crashes in which the truck turns

Safety impact	Exposure range (side guard relevant crashes as a percentage of all crashes)	Effectiveness range (reduction in fatality or serious injury as a proportion of all injuries)	Exposure x effectiveness (theoretical mitigation potential expressed in terms of all crashes)
Bicyclist fatalities	9-23%*	55-75%	5-17%
Bicyclist serious	12-35%*	3-17%	<1-6%
injuries			
Pedestrian fatalities	10-14%**	20-27%	2-4%
Pedestrian serious	19%**	<1%	<1%
injuries			

Four UK field studies (before vs. after) showed exposure and effectiveness nationwide data from 1980 to 2008

[†] Keigan, 2009; Van Kampen 1999; and Cookson 2010, which presents both affirmative and contradictory findings

*45% of bicycle crashes are driver- or passenger-side, roughly parallel crashes across all severities; however, an effectiveness value was not reported.

**Pedestrian crashes only reflect passenger- and not driver-side impacts. (Knight, 2005), (Smith, 2005), (Cookson, 2010), and (Robinson, 2014)

Total truck-VRU fatality and injury reductions reported in connection with implementation of LPDs, across all studies reviewed:

- Fatalities:
 - Studies specific to <u>bicycle</u> fatalities: **5 30%**.
 - Studies specific to <u>pedestrian</u> fatalities: **2 4%**
 - Studies that <u>did not differentiate</u> by VRU category: up to **20%**
- Serious injuries:
 - Studies specific to <u>bicycle</u> serious injuries: **<1 6%**
 - One study specific to <u>pedestrian</u> serious injuries: **<1%**
 - Studies that <u>did not differentiate</u> by VRU category: up to **25%**

Volpe analysis; see also: <u>https://rosap.ntl.bts.gov/view/dot/49250</u>

Safety effectiveness findings: Exempt/non-exempt

Finding: LPD-equipped truck-bicycle passing/overtaking crashes in the UK were ~70% less likely to result in a fatality than crashes involving SG-exempt trucks

		Fatal	Serious	Slight	% fatal	% KSI
1990-1992	Exempt (no SG)	6	18	22	13%	52%
	Not exempt	5	34	103	4%	27%
	(equipped with SG))
2006-2008	Exempt (no SG)	4	11	15	14%	52%
	Not exempt	3	23	43	4%	37%
	(equipped with SG))

Crash severity distribution in truck-bicycle passing/overtaking crashes

(Knight, et al., 2005; Cookson & Knight, 2010)

Finding: LPD-equipped truck-bicycle turning crashes in the UK were 40% less likely to result in a fatality than crashes involving SG-exempt trucks

		Fatal	Serious	Slight	% fatal	% KSI
2006-2008	Exempt (no SG)	9	21	15	20%	67%
2000 2000	Not exempt	7	8	44	12%	25%
	(equipped with SG))

(Cookson & Knight, 2010)

Finding: UK field studies based on detailed investigations of individual fatal bicyclist crashes show various, sometimes higher effectiveness numbers, including for turning crashes

Study	LPD implementation	Crash set	Effectiveness (reduction in fatality or serious injury as a proportion of all injuries)
Keigan09	UK regulatory requirement	Heavy vehicle changing lanes or turning left	93.8%
Keigan09	UK regulatory requirement	Cyclist lost control alongside vehicle	45.5%
Keigan09	UK regulatory requirement	Total of the two above	74.1%
Talbot14	UK regulatory requirement	Side crashes	11.5%
Talbot14	More stringent side guard dimensions to close gaps	Side crashes	26.9%

Finding: certain studies from Australia, the Netherlands, and the UK report high combined effectiveness for pedestrians and bicyclists, including for turning crashes

Publication	LPD implementation	Crash set	Exposure (side guard relevant crashes as a percentage of all crashes)	Effectiveness (reduction in fatality or serious injury as a proportion of all injuries)
Rechnitzer93	Not specified	All fatal crashes	100.0%	20.0%
Rechnitzer93	Not specified	All serious injury crashes	100.0%	25.0%
VanKampen99	Bus as proxy for low- clearance guard condition	All passenger side turning maneuvers (rail-style side guard)	Not specified	25.0%
VanKampen99	Bus as proxy for low- clearance guard condition	All passenger side turning maneuvers (smooth-style side guard)	Not specified	35.0%
Riley81	Not specified	Side impacts for motorcyclists, bicyclists, and pedestrians	66.0%	24.0%

Finding: Lower side guard height increases effectiveness

Study	Guard implementation	Crash set	Effectiveness (reduction in fatality or serious injury as a proportion of all injuries)
Hogstrom86	Not specified	Not specified	35.0%
Riley85	Maximum allowable gaps and inset under UK regulation, including 550mm ground clearance	Cyclist lost control a longside vehicle	60.0%
Riley85	Improved guard, 450mm ground clearance	Cyclist lost control alongside vehicle	80.0%
Riley85	Improved guard, 400mm ground clearance	Cyclist lost control alongside vehicle	100.0%
Riley85	Improved guard, 300mm ground clearance	Cyclist lost control alongside vehicle	100.0%

Finding: Improved side guard design increases potential VRU fatality mitigation

Countermeasure	Total estimated lives that would have been saved by countermeasure (1997-2006)
Improve forward vision	8
Improve side vision	21
Install stronger and lower side guards*	13.25
Install aerodynamic side guards*	21
Provide bicycle lane	34.25
Other	9.75

(Knight, et al., 2005)

Prior findings may have underestimated effectiveness or exposure

- Effectiveness was based on partial real-world implementation (Robinson14)
- Did not consider improved LPD design (Riley85, Knight05)
- Limited crash scenarios considered, e.g., no driver side (Knight05, Cookson10, Smith05)

Safe Fleet Transition Plan: Private Vehicle Crashes and Vehicle Safety Technology

Preliminary Report: Expanding the NYC Safe Fleet Transition Plan to Trade Waste Industry and Private Truck Fleets

Alexander K Epstein, Ph.D., Michael Chang, Lucy Liu, and Rahi Patel

December 2021

Prepared for: Business Integrity Commission and Department of Citywide Administrative Services City of New York

	Fatality	Injury
No side guard	17.2%	82.8%
Yes side guard	12.9%	87.1%
Unknown	15.0%	85.0%
Total	15.7%	84.3%

25% fatality rate decrease

https://www1.nyc.gov/assets/dcas/downloads/pdf/fleet/Safe-Fleet-Transition-Plan-Private-Vehicle-Crashes-and-Safety-Technology-December-2021.pdf; n = 18 fatalities, 97 injuries, 115 total Note: This has not been exhaustively studied to confirm and has not been examined within USDOT beyond Volpe's analysis.

Technology demonstration

Notional turning crash simulation

No LPD

Aerodynamic LPD

U.S. Department of Transportation Volpe Center

Source: Seven Hills Engineering

LPD technology demonstration results

- Collaboration between Volpe, Tufts University and City of Cambridge Public Works
- Methodology: anatomically jointed manikins, controlled release into SUT with photo-sensors
- Multiple crash scenarios and targets
- Video: <u>https://youtu.be/FREj0hKJOFg</u>

Technology demonstration results: person walking

Technology demonstration results: person biking

Retrofit feasibility

Retrofit feasibility assessment

- Considered potential installation and operational interactions between the U.S. truck fleet's most common cargo body types, almost 50 vehicle components, and the installation of aftermarket side guards.
 - No truck parts or accessories were identified as incompatible with LPDs.
- Considered potential interactions between side guards—whether aftermarket or premarket—and FMCSA commercial vehicle safety inspections.
 - Several existing solutions were identified for continuing to perform Level 1 safety inspections on trucks with LPDs.

Credit: FMCSA

Retrofit feasibility assessment

Related Implementation Cost	Synergistic (Potential Cost Savings)	Synergistic or Adaptation (Minimal Cost or Potential Cost Savings)	Adaptation (Low Cost)	Incompatible (High Cost)
Aftermarket	 Wheels Frame or chassis Underbody toolbox Side marker lamps Air reservoir Stairs Stored spare tire Tires Lift axle 	 Underbody fuel tank Aerodynamic truck skirt Ladder Stabilizer leg 	 Fire extinguishe rs 	• None
Premarket	 Wheels Frame or chassis Underbody toolbox Fire extinguisher Side marker lamps Air reservoir Stairs Stored spare tire Tires Lift axle 	 Underbody fuel tank Aerodynamic truck skirt Ladder Stabilizer leg 	• None	• None

The information in this and in related materials represents the best technical judgment of U.S. DOT Volpe Center staff based on their independent and objective technical analysis and expertise, and is not to be misconstrued as statements of U.S. DOT policy or guidance.

Benefits, costs, and aerodynamic factor

Types, costs, and aerodynamic factor

SUT / Non-aerodynamic (rail-style)

CT / Non-aerodynamic (rail-style)

SUT / Aerodynamic (panel-style)

CT / Aerodynamic (panel-style)

Note: aerodynamic savings only become significant when the vehicle travels at higher speed.

Counterintuitive finding #1: Tractor-trailers crashed with VRUs in relevant scenarios at least as often as SUTs

Side Guard-Relevant Bicyclist Fatalities by Truck Category from 2005 to 2015

Side Guard-Relevant Pedestrian Fatalities by Truck Category from 2006 to 2015

The information in this and in related materials represents the best technical judgment of U.S. DOT Volpe Center staff based on their independent and objective technical analysis and expertise, and is not to be misconstrued as statements of U.S. DOT policy or guidance.

Counterintuitive finding #2: SUTs drive at least 40% on highways (where aerodynamics matter)

Truck Type Interstate Interstate Other Other Other Category Rural Urban Rural Urban Arterial Rural SUT and CT 55 25 Assumed Speed (MPH) 55 40 25 Percent of VMT Driven 30% 21% 18% 9% 22% CT Fuel Efficiency (GPM) 1.4% 1.0% 0.7% 0.1% 0.3% Percent Increase with Side Guard Deployed SUT Percent of VMT Driven 10% 13% 17%17% 43% Fuel Efficiency (GPM) 0.4% 0.6% 0.5% 0.2% 0.5% Percent Increase with Side Guard Deployed

Table 10: Fuel Efficiency Improvement of Combination Trucks (CT) and Single-Unit Trucks (SUT) by VMT

The information in this and in related materials represents the best technical judgment of U.S. DOT Volpe Center staff based on their independent and objective technical analysis and expertise, and is not to be misconstrued as statements of U.S. DOT policy or guidance.

Types, costs, and aerodynamic factor

Source type	Reported approximate cost per vehicle	Side guard type
European suppliers, e.g., Takler	~\$300-\$1,500; ~\$700 average	Typically rail
Certain trailer skirt makers, e.g., Transtex, WABCO, PHSS	~\$1,000+ plus installation	Rigid panel

<-----Aerodynamic fuel consumption savings----->

- Above costs are OEM. Cost of retrofitting ranges \$700-\$1,800 for rail design and \$1,000-\$2,700 for full panel designs
- Benefit-cost analysis used the median figures: \$1,250 for rail retrofit and \$1,850 for full panel retrofit.

The information in this and in related materials represents the best technical judgment of U.S. DOT Volpe Center staff based on their independent and objective technical analysis and expertise, and is not to be misconstrued as statements of U.S. DOT policy or guidance.

- Considered the safety benefits for all side guards as well as aerodynamic benefits for aerodynamic type side guards, which are dual-function
- Crashes included in the analysis were limited to only those whose crash cost could conceivably be reduced if a side guard had been on the truck
- Current aerodynamic underbody skirts were assumed to require reinforcement to provide equivalent safety benefit
- •7% discount rate

The information in this and in related materials represents the best technical judgment of U.S. DOT Volpe Center staff based on their independent and objective technical analysis and expertise, and is not to be misconstrued as statements of U.S. DOT policy or guidance.

Scenario 1: Full Deployment First Year (all trucks equipped at once)

The information in this and in related materials represents the best technical judgment of U.S. DOT Volpe Center staff based on their independent and objective technical analysis and expertise, and is not to be misconstrued as statements of U.S. DOT policy or guidance.

Scenario 2: Gradual Deployment (5% of fleet equipped per year)

The information in this and in related materials represents the best technical judgment of U.S. DOT Volpe Center staff based on their independent and objective technical analysis and expertise, and is not to be misconstrued as statements of U.S. DOT policy or guidance.

Scenario 3: **Aero Skirts Fully Deployed** (assumes all trucks are equipped with aero skirts by 2020 so that no aero benefits are realized)

The information in this and in related materials represents the best technical judgment of U.S. DOT Volpe Center staff based on their independent and objective technical analysis and expertise, and is not to be misconstrued as statements of U.S. DOT policy or guidance.

Scenario Benefit-Cost Ratio (BCR) Results (Discounted at 7 percent)

Cooperies	BCR (High	BCR (Low	Total Net Benefits	Total Net Benefits
Scenarios	Benefits)	Benefits)	(High Benefits)	(Low Benefits)
Full Deployment First Year	4.65	3.53	\$61.6 billion	\$42.2 billion
Gradual Deployment	2.05	2.22	ćээ г hillion	ć15 2 hillion
(5 Percent Annual Retrofit)	3.05	2.33	\$23.5 billion	\$15.3 billion
Aero skirt Fully Deployed	2.28	1.19	\$2.70 billion	\$0.40 billion

Scenario Benefit-Cost Ratio (BCR) Results (Discounted at 3 percent)

Seenarios	BCR (High	BCR (Low	Total Net Benefits	Total Net Benefits
scenarios	Benefits)	Benefits)	(High Benefits)	(Low Benefits)
Full Deployment First Year	6.12	4.65	\$101 billion	\$72 billion
Gradual Deployment	2.50	2.70		ά20 Γ hillion
(5 Percent Annual Retrofit)	3.59	2.76	\$45.2 billion	
Aero skirt Fully Deployed	2.52	1.31	\$5.2 billion	\$1.1 billion

Payback Period for Each Scenario and Discount Rate, Assuming Low or High Benefits Level

	7 Percent Discount		3 Percent Discount	
Scenarios	High Benefits	Low Benefits	High Benefits	Low Benefits
Full Deployment First Year	3 years	4 years	3 years	4 years
Gradual Deployment	6 years	8 years	6 years	8 years
Aero skirt Fully Deployed	6 years	18 years	6 years	16 years

The information in this and in related materials represents the best technical judgment of U.S. DOT Volpe Center staff based on their independent and objective technical analysis and expertise, and is not to be misconstrued as statements of U.S. DOT policy or guidance.

- All three scenarios show net benefits of U.S.-wide side guard deployment. Aerodynamics comprise a significant share of total benefits, except in Scenario 3.
- Potential benefits not considered:
 - Improving wind stability and related crash costs
 - Reducing road spray and related crash costs
 - Mitigating low-speed or glancing automobile-truck collisions and associated costs
 - Improving automatic emergency braking system detection of the truck such as in the Tesla "Autopilot" 2016 Florida fatality, and reducing such crashes

The information in this and in related materials represents the best technical judgment of U.S. DOT Volpe Center staff based on their independent and objective technical analysis and expertise, and is not to be misconstrued as statements of U.S. DOT policy or guidance.

Conclusions

- Growing interest and local/state policies in U.S. to address truck-VRU collisions with LPDs or side guards
- LPDs are a globally implemented safety countermeasure for truck-VRU collisions
- International studies have demonstrated effectiveness
- No incompatibilities identified with common truck types and components or with Level 1 safety inspections
- Benefit-cost ratios >1 under three bounding notional implementation scenarios

The information in this and in related materials represents the best technical judgment of U.S. DOT Volpe Center staff based on their independent and objective technical analysis and expertise, and is not to be misconstrued as statements of U.S. DOT policy or guidance.

www.volpe.dot.gov/LPDs

An official website of the United States government <u>Here</u> Ounited States Department of Transportation	<u>e's how you know</u> ♥					
U.S. Department of Transportation Volpe Center					Search	Q
	About Us	Our Work	Work With Us	Careers	Publications	News & Events

Home / Our Work / Policy, Planning, and Environment

Our Work

Communications, Navigation, Surveillance Systems, and Engineering

Infrastructure Systems & Technology

Policy, Planning, & Environment >

Safety Management & Human Factors

Truck Lateral Protective Device (LPD) Resources

Note: the term "side guard" is used colloquially throughout this webpage and related materials, but refers to "lateral protective devices" and not to "underride" guards.

Truck lateral protective devices are vehicle-based safety devices designed to keep pedestrians, bicyclists, and motorcyclists from being run over by a large truck's rear wheels in a side-impact collision.

The U.S. DOT Volpe Center is monitoring this technology's adoption in the United States, and has conducted research and partnered with public- and private-sector fleets to help deploy lateral protective devices and other technologies that address the **deadliest road crashes**: those between large trucks and pedestrians or bicyclists.

Questions?

Alexander Epstein, Ph.D. alexander.epstein@dot.gov (617) 494-2539

https://www.volpe.dot.gov/LPDs

Research team:

- Jonathan Badgley •
- Andrew Breck •
- Margo Dawes ٠
- Katherine Welty •
- Alexandra McNally •
- Sean Peirce •

Our Purpose Advancing transportation innovation for the public good.

OUR CORE VALUES

Collaboration and Partnering

Professional Excellence

Employee Well-Being

