<_.fcp.AccessibleZoneTabOrder.true...AccessibleZoneTabOrder /> <_.fcp.AnimationOnByDefault.true...AnimationOnByDefault /> <_.fcp.MarkAnimation.true...MarkAnimation /> <_.fcp.ObjectModelEncapsulateLegacy.true...ObjectModelEncapsulateLegacy /> <_.fcp.ObjectModelTableType.true...ObjectModelTableType /> <_.fcp.ParameterActionClearSelection.true...ParameterActionClearSelection /> <_.fcp.SchemaViewerObjectModel.true...SchemaViewerObjectModel /> #826aed #c879ff #826aed #caff8a #ffb7ff <_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='textscan.06k0wdw0x2ci5a19d4xop1htryg6' name='all_routes.csv' table='[all_routes#csv]' type='table'> <_.fcp.ObjectModelEncapsulateLegacy.true...relation connection='textscan.06k0wdw0x2ci5a19d4xop1htryg6' name='all_routes.csv' table='[all_routes#csv]' type='table'> 0 [all_routes.csv] Count true "UTF-8" "en_US" "," "true" "en_US" "" scenario_name 129 [scenario_name] [all_routes.csv] scenario_name 0 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[all_routes.csv_37D5141D89F14AF5B96EEACCD48EEC49] route_id 20 [route_id] [all_routes.csv] route_id 1 integer Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[all_routes.csv_37D5141D89F14AF5B96EEACCD48EEC49] from_facility 129 [from_facility] [all_routes.csv] from_facility 2 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[all_routes.csv_37D5141D89F14AF5B96EEACCD48EEC49] from_facility_type 129 [from_facility_type] [all_routes.csv] from_facility_type 3 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[all_routes.csv_37D5141D89F14AF5B96EEACCD48EEC49] to_facility 129 [to_facility] [all_routes.csv] to_facility 4 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[all_routes.csv_37D5141D89F14AF5B96EEACCD48EEC49] to_facility_type 129 [to_facility_type] [all_routes.csv] to_facility_type 5 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[all_routes.csv_37D5141D89F14AF5B96EEACCD48EEC49] commodity_name 129 [commodity_name] [all_routes.csv] commodity_name 6 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[all_routes.csv_37D5141D89F14AF5B96EEACCD48EEC49] phase 129 [phase] [all_routes.csv] phase 7 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[all_routes.csv_37D5141D89F14AF5B96EEACCD48EEC49] mode 129 [mode] [all_routes.csv] mode 8 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[all_routes.csv_37D5141D89F14AF5B96EEACCD48EEC49] dollar_cost 5 [dollar_cost] [all_routes.csv] dollar_cost 9 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[all_routes.csv_37D5141D89F14AF5B96EEACCD48EEC49] routing_cost 5 [routing_cost] [all_routes.csv] routing_cost 10 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[all_routes.csv_37D5141D89F14AF5B96EEACCD48EEC49] miles 5 [miles] [all_routes.csv] miles 11 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[all_routes.csv_37D5141D89F14AF5B96EEACCD48EEC49] in_solution 129 [in_solution] [all_routes.csv] in_solution 12 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[all_routes.csv_37D5141D89F14AF5B96EEACCD48EEC49] <_.fcp.ObjectModelTableType.true...column caption='all_routes.csv' datatype='table' name='[__tableau_internal_object_id__].[all_routes.csv_37D5141D89F14AF5B96EEACCD48EEC49]' role='measure' type='quantitative' /> "road" "pipeline_crude_trf_rts" "pipeline_prod_trf_rts" <_.fcp.ObjectModelEncapsulateLegacy.true...object-graph> <_.fcp.ObjectModelEncapsulateLegacy.false...relation join='inner' type='join'> <_.fcp.ObjectModelEncapsulateLegacy.true...relation join='inner' type='join'> ROUTE_TYPE 129 [ROUTE_TYPE] [optimized_route_segments] ROUTE_TYPE 0 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] FTOT_RT_ID 20 [FTOT_RT_ID] [optimized_route_segments] FTOT_RT_ID 1 integer Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] FTOT_RT_ID_VARIANT 20 [FTOT_RT_ID_VARIANT] [optimized_route_segments] FTOT_RT_ID_VARIANT 2 integer Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] NET_SOURCE_NAME 129 [NET_SOURCE_NAME] [optimized_route_segments] NET_SOURCE_NAME 3 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] NET_SOURCE_OID 20 [NET_SOURCE_OID] [optimized_route_segments] NET_SOURCE_OID 4 integer Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] ARTIFICIAL 20 [ARTIFICIAL] [optimized_route_segments] ARTIFICIAL 5 integer Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] FromPosition 5 [FromPosition] [optimized_route_segments] FromPosition 6 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] FromJunctionID 5 [FromJunctionID] [optimized_route_segments] FromJunctionID 7 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] TIME_PERIOD 129 [TIME_PERIOD] [optimized_route_segments] TIME_PERIOD 8 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] COMMODITY 129 [COMMODITY] [optimized_route_segments] COMMODITY 9 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] COMMODITY_FLOW 5 [COMMODITY_FLOW] [optimized_route_segments] COMMODITY_FLOW 10 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] VOLUME 5 [VOLUME] [optimized_route_segments] VOLUME 11 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] CAPACITY 5 [CAPACITY] [optimized_route_segments] CAPACITY 12 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] CAPACITY_MINUS_VOLUME 5 [CAPACITY_MINUS_VOLUME] [optimized_route_segments] CAPACITY_MINUS_VOLUME 13 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] UNITS 129 [UNITS] [optimized_route_segments] UNITS 14 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] MILES 5 [MILES] [optimized_route_segments] MILES 15 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] PHASE_OF_MATTER 129 [PHASE_OF_MATTER] [optimized_route_segments] PHASE_OF_MATTER 16 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] LINK_ROUTING_COST 5 [LINK_ROUTING_COST] [optimized_route_segments] LINK_ROUTING_COST 17 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] LINK_DOLLAR_COST 5 [LINK_DOLLAR_COST] [optimized_route_segments] LINK_DOLLAR_COST 18 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] ROAD_FCLASS 20 [ROAD_FCLASS] [optimized_route_segments] ROAD_FCLASS 19 integer Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] URBAN_CODE 20 [URBAN_CODE] [optimized_route_segments] URBAN_CODE 20 integer Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Shape_Length 5 [Shape_Length] [optimized_route_segments] Shape_Length 21 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] record_id 129 [record_id] [optimized_route_segments] record_id 22 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Scenario_Name 129 [Scenario_Name] [optimized_route_segments] Scenario_Name 23 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Geometry 8 [Geometry] [optimized_route_segments] Geometry 24 spatial Collect true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] FIPS 129 [FIPS] [facilities_merge] FIPS 25 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Name 129 [Name] [facilities_merge] Name 26 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Facility_Name 129 [Facility_Name] [facilities_merge] Facility_Name 27 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] optimal 5 [optimal] [facilities_merge] optimal 28 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Dataset 129 [Dataset] [facilities_merge] Dataset 29 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Candidate 20 [Candidate] [facilities_merge] Candidate 30 integer Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Scenario_Name 129 [Scenario_Name (facilities_merge)] [facilities_merge] Scenario_Name 31 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Geometry 8 [Geometry (facilities_merge)] [facilities_merge] Geometry 32 spatial Collect true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] <_.fcp.ObjectModelTableType.true...column caption='Migrated Data' datatype='table' name='[__tableau_internal_object_id__].[Migrated Data]' role='measure' type='quantitative' /> <_.fcp.ObjectModelEncapsulateLegacy.true...object-graph> <_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='ogrdirect.138xfj61puhc4a1gyf7140flgf3d' name='optimized_route_segments' table='[optimized_route_segments]' type='table'> <_.fcp.ObjectModelEncapsulateLegacy.true...relation connection='ogrdirect.138xfj61puhc4a1gyf7140flgf3d' name='optimized_route_segments' table='[optimized_route_segments]' type='table'> ROUTE_TYPE 129 [ROUTE_TYPE] [optimized_route_segments] ROUTE_TYPE 0 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] FTOT_RT_ID 20 [FTOT_RT_ID] [optimized_route_segments] FTOT_RT_ID 1 integer Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] FTOT_RT_ID_VARIANT 20 [FTOT_RT_ID_VARIANT] [optimized_route_segments] FTOT_RT_ID_VARIANT 2 integer Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] NET_SOURCE_NAME 129 [NET_SOURCE_NAME] [optimized_route_segments] NET_SOURCE_NAME 3 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] NET_SOURCE_OID 20 [NET_SOURCE_OID] [optimized_route_segments] NET_SOURCE_OID 4 integer Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] ARTIFICIAL 20 [ARTIFICIAL] [optimized_route_segments] ARTIFICIAL 5 integer Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] FromPosition 5 [FromPosition] [optimized_route_segments] FromPosition 6 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] FromJunctionID 5 [FromJunctionID] [optimized_route_segments] FromJunctionID 7 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] TIME_PERIOD 129 [TIME_PERIOD] [optimized_route_segments] TIME_PERIOD 8 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] COMMODITY 129 [COMMODITY] [optimized_route_segments] COMMODITY 9 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] COMMODITY_FLOW 5 [COMMODITY_FLOW] [optimized_route_segments] COMMODITY_FLOW 10 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] VOLUME 5 [VOLUME] [optimized_route_segments] VOLUME 11 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] CAPACITY 5 [CAPACITY] [optimized_route_segments] CAPACITY 12 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] CAPACITY_MINUS_VOLUME 5 [CAPACITY_MINUS_VOLUME] [optimized_route_segments] CAPACITY_MINUS_VOLUME 13 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] UNITS 129 [UNITS] [optimized_route_segments] UNITS 14 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] MILES 5 [MILES] [optimized_route_segments] MILES 15 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] PHASE_OF_MATTER 129 [PHASE_OF_MATTER] [optimized_route_segments] PHASE_OF_MATTER 16 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] LINK_ROUTING_COST 5 [LINK_ROUTING_COST] [optimized_route_segments] LINK_ROUTING_COST 17 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] LINK_DOLLAR_COST 5 [LINK_DOLLAR_COST] [optimized_route_segments] LINK_DOLLAR_COST 18 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] ROAD_FCLASS 20 [ROAD_FCLASS] [optimized_route_segments] ROAD_FCLASS 19 integer Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] URBAN_CODE 20 [URBAN_CODE] [optimized_route_segments] URBAN_CODE 20 integer Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Shape_Length 5 [Shape_Length] [optimized_route_segments] Shape_Length 21 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] record_id 129 [record_id] [optimized_route_segments] record_id 22 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Scenario_Name 129 [Scenario_Name] [optimized_route_segments] Scenario_Name 23 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Geometry 8 [Geometry] [optimized_route_segments] Geometry 24 spatial Collect true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] <_.fcp.ObjectModelTableType.true...column caption='Migrated Data' datatype='table' name='[__tableau_internal_object_id__].[Migrated Data]' role='measure' type='quantitative' /> "road" "pipeline_crude_trf_rts" "pipeline_prod_trf_rts" <_.fcp.ObjectModelEncapsulateLegacy.true...object-graph> <_.fcp.ObjectModelEncapsulateLegacy.false...relation join='left' type='join'> <_.fcp.ObjectModelEncapsulateLegacy.true...relation join='left' type='join'> 0 [tableau_report.csv] Count true "UTF-8" "en_US" "," "true" "en_US" "" FIPS 129 [FIPS] [facilities_merge] FIPS 0 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Name 129 [Name] [facilities_merge] Name 1 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Facility_Name 129 [Facility_Name] [facilities_merge] Facility_Name 2 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] optimal 5 [optimal] [facilities_merge] optimal 3 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Dataset 129 [Dataset] [facilities_merge] Dataset 4 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Candidate 20 [Candidate] [facilities_merge] Candidate 5 integer Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Scenario_Name 129 [Scenario_Name] [facilities_merge] Scenario_Name 6 string Count true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] Geometry 8 [Geometry] [facilities_merge] Geometry 7 spatial Collect true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] scenario_name 129 [scenario_name] [tableau_report.csv] scenario_name 8 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] table_name 129 [table_name] [tableau_report.csv] table_name 9 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] commodity 129 [commodity] [tableau_report.csv] commodity 10 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] facility_name 129 [facility_name (tableau_report.csv)] [tableau_report.csv] facility_name 11 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] measure 129 [measure] [tableau_report.csv] measure 12 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] mode 129 [mode] [tableau_report.csv] mode 13 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] value 5 [value] [tableau_report.csv] value 14 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] units 129 [units] [tableau_report.csv] units 15 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] notes 129 [notes] [tableau_report.csv] notes 16 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] <_.fcp.ObjectModelEncapsulateLegacy.false...relation connection='textscan.02pcnha15fvopd1a5aw0m1es2i6g' name='tableau_report.csv' table='[tableau_report#csv]' type='table'> <_.fcp.ObjectModelEncapsulateLegacy.true...relation connection='textscan.02pcnha15fvopd1a5aw0m1es2i6g' name='tableau_report.csv' table='[tableau_report#csv]' type='table'> 0 [tableau_report.csv] Count true "UTF-8" "en_US" "," "true" "en_US" "" scenario_name 129 [scenario_name] [tableau_report.csv] scenario_name 0 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] table_name 129 [table_name] [tableau_report.csv] table_name 1 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] commodity 129 [commodity] [tableau_report.csv] commodity 2 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] facility_name 129 [facility_name] [tableau_report.csv] facility_name 3 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] measure 129 [measure] [tableau_report.csv] measure 4 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] mode 129 [mode] [tableau_report.csv] mode 5 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] value 5 [value] [tableau_report.csv] value 6 real Sum true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] units 129 [units] [tableau_report.csv] units 7 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] notes 129 [notes] [tableau_report.csv] notes 8 string Count 1 1073741823 true <_.fcp.ObjectModelEncapsulateLegacy.true...object-id>[Migrated Data] <_.fcp.ParameterActionClearSelection.true...clear-option type='do-nothing' value='i:1' /> <_.fcp.ParameterActionClearSelection.true...clear-option type='do-nothing' value='i:1' /> <_.fcp.ParameterActionClearSelection.true...clear-option type='do-nothing' value='i:1' /> <formatted-text> <run bold='true' fontalignment='1' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>Routes Summary</run> </formatted-text> "Y" "N" "rail" "water" "multimodal" "road" "pipeline_crude_trf_rts" "pipeline_prod_trf_rts" [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:from_facility_type:nk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:from_facility:nk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:to_facility_type:nk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:to_facility:nk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:commodity_name:nk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:mode:nk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:Calculation_2725522248932995072:nk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:scenario_name:nk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:in_solution:nk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:Miles (bin):qk] : ]]> ]]> Æ Miles Range: Æ - <[federated.0biw4sc0geh7th15l7l8h1cmbo8h].[attr:Calculation_2938035856382906371:qk]>]]> Æ Count of Routes: ]]> Æ Avg. Per-Unit Dollar Cost: Æ ]]> Æ : ]]> ]]> Æ Miles Range: Æ - <[federated.0biw4sc0geh7th15l7l8h1cmbo8h].[attr:Calculation_2938035856382906371:qk]>]]> Æ Count of Routes: ]]> Æ Avg. Per-Unit Dollar Cost: Æ ]]> Æ : ]]> ]]> Æ Miles Range: Æ - <[federated.0biw4sc0geh7th15l7l8h1cmbo8h].[attr:Calculation_2938035856382906371:qk]>]]> Æ Count of Routes: ]]> Æ Avg. Cost per Unit: Æ ]]> Æ ([federated.0biw4sc0geh7th15l7l8h1cmbo8h].[cnt:miles:qk] + [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[avg:dollar_cost:qk])[federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:Miles (bin):qk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[Miles (bin)]
<formatted-text> <run>Top Level Scenario Results</run> </formatted-text> [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_MEASURE BUTTON PARAM CALC (copy)_6053400880426811392:nk] Scenario Summary of < [federated.10gkjpb1b4lygg106228z03zitbj].[none:_MEASURE BUTTON PARAM CALC (copy)_6053400880426811392:nk] >
"dollar_cost" "miles" "total_flow" "vmt" "fuel_burn" "co2" [federated.10gkjpb1b4lygg106228z03zitbj].[none:Measure (copy)_5919418790824370183:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] Measure: < [federated.10gkjpb1b4lygg106228z03zitbj].[none:Measure (copy)_5919418790824370183:nk] > [federated.10gkjpb1b4lygg106228z03zitbj].[usr:Calculation_5919418790820335622:qk][federated.10gkjpb1b4lygg106228z03zitbj].[none:Measure (copy)_5919418790824370183:nk]
<formatted-text> <run bold='true' fontalignment='1' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>Size & Utilization of Facilities</run> </formatted-text> "[federated.0w6r3991xjsayc1h2x9ss08urjyr].[attr:_optimal (copy)_1805099077003493388:qk]" "[federated.0w6r3991xjsayc1h2x9ss08urjyr].[attr:_optimal FRAC (copy)_1805099077004091405:qk]" [federated.0w6r3991xjsayc1h2x9ss08urjyr].[:Measure Names] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:scenario_name:nk] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:_Demand_or_Supply (copy)_1320680640681058304:nk] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:Calculation_120752824411402243:nk] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:mode:nk] Scenario: Æ ]]> Æ Facility: Æ ]]> Æ ]]> Æ Æ Total Optimal Quantity: Æ ]]> ]]> Æ :]]> Æ ]]> Æ [federated.0w6r3991xjsayc1h2x9ss08urjyr].[Latitude (generated)][federated.0w6r3991xjsayc1h2x9ss08urjyr].[Longitude (generated)] [federated.10gkjpb1b4lygg106228z03zitbj].[commodity] [federated.10gkjpb1b4lygg106228z03zitbj].[facility_name] [federated.10gkjpb1b4lygg106228z03zitbj].[measure] [federated.10gkjpb1b4lygg106228z03zitbj].[mode] [federated.10gkjpb1b4lygg106228z03zitbj].[scenario_name] [federated.10gkjpb1b4lygg106228z03zitbj].[table_name]
<formatted-text> <run bold='true' fontalignment='1' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>Optimal Solution Routes by <</run> <run bold='true' fontalignment='1' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>[Parameters].[Parameter 1]</run> <run bold='true' fontalignment='1' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>></run> </formatted-text> [federated.0yva53w01g26mj1b3sof51c90b07].[none:Scenario_Name:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:COMMODITY:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:NET_SOURCE_NAME:nk] ]]> Æ ]]> Æ ]]> Æ were transported along this Æ optimal route segment by ]]> ]]> ]]> ]]> ]]> Æ ]]> Æ ]]> Æ ]]> Æ were transported along this Æ optimal route segment by ]]> ]]> ]]> ]]> ]]> Æ ]]> Æ Æ Æ were transported along this Æ optimal route segment by Æ [federated.0yva53w01g26mj1b3sof51c90b07].[Latitude (generated)]([federated.0yva53w01g26mj1b3sof51c90b07].[Longitude (generated)] + [federated.0yva53w01g26mj1b3sof51c90b07].[Longitude (generated)]) [federated.10gkjpb1b4lygg106228z03zitbj].[commodity] [federated.10gkjpb1b4lygg106228z03zitbj].[mode] [federated.0d63frf0ic1nno14iqyod047s2ab].[Calculation_895653396816908288] [federated.0d63frf0ic1nno14iqyod047s2ab].[Scenario_Name] [federated.0d63frf0ic1nno14iqyod047s2ab].[record_id]
<formatted-text> <run bold='true' fontalignment='1' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>Available Facilities</run> </formatted-text> "Destination" "Processor (Input)" "Processor (Output)" "Raw Material Supplier" [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:scenario_name:nk] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:commodity:nk] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:_Demand_or_Supply (copy)_803892570930683904:nk] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:Facility Type (copy)_1293377555483160576:nk] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:measure:nk] ]]> ]]> [federated.0w6r3991xjsayc1h2x9ss08urjyr].[Latitude (generated)][federated.0w6r3991xjsayc1h2x9ss08urjyr].[Longitude (generated)] [federated.10gkjpb1b4lygg106228z03zitbj].[commodity] [federated.10gkjpb1b4lygg106228z03zitbj].[facility_name] [federated.10gkjpb1b4lygg106228z03zitbj].[measure] [federated.10gkjpb1b4lygg106228z03zitbj].[mode] [federated.10gkjpb1b4lygg106228z03zitbj].[scenario_name] [federated.10gkjpb1b4lygg106228z03zitbj].[table_name]
<formatted-text> <run bold='true' fontalignment='1' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>Size of Facilities</run> </formatted-text> "rmp_supply_potential" "processor_input_capacity" "processor_output_capacity" "processor_input_optimal" "processor_output_optimal" "destination_demand_potential" [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:mode:nk] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:scenario_name:nk] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:commodity:nk] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[Tooltip (Facility_Name,Scenario Name)] < [federated.0w6r3991xjsayc1h2x9ss08urjyr].[avg:value:qk] > < [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:Calculation_2000161223005126656:nk] > [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:commodity:nk][federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:measure:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[commodity] [federated.10gkjpb1b4lygg106228z03zitbj].[facility_name] [federated.10gkjpb1b4lygg106228z03zitbj].[measure] [federated.10gkjpb1b4lygg106228z03zitbj].[mode] [federated.10gkjpb1b4lygg106228z03zitbj].[scenario_name] [federated.10gkjpb1b4lygg106228z03zitbj].[table_name]
<formatted-text> <run bold='true' fontalignment='1' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'><![CDATA[Total vs. Optimal Supply & Demand <]]></run> <run bold='true' fontalignment='1' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>[Parameters].[Parameter 2]</run> <run bold='true' fontalignment='1' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>></run> </formatted-text> "Supply" "SUPPLY" "DESTINATION" "Demand" "destination_demand_optimal" "destination_demand_optimal" "rmp_supply_optimal" "rmp_supply_optimal" [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:Calculation_532832186146295808:nk] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:scenario_name:nk] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:_Demand_or_Supply (copy)_1320680640681058304:nk] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:Calculation_120752824411402243:nk] ,<[federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk]>,<[Parameters].[Parameter 2]>">]]> Æ for ]]> Æ ]]> Æ Æ ]]> Æ Æ Number of Total and Optimal Facilities Æ as a Percent of All Facilties "> ]]> ]]> Æ [federated.10gkjpb1b4lygg106228z03zitbj].[usr:Calculation_2045197221854609432:qk]([federated.10gkjpb1b4lygg106228z03zitbj].[none:Calculation_532832186146295808:nk] / ([federated.10gkjpb1b4lygg106228z03zitbj].[none:commodity:nk] / [federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk])) [federated.0w6r3991xjsayc1h2x9ss08urjyr].[facility_name (tableau_report.csv)] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[mode] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[table_name]
<formatted-text> <run bold='true' fontalignment='1' fontcolor='#00007f' fontname='Tableau Bold' fontsize='11'>Key Input Parameters</run> </formatted-text> "Scenario" "Scenario Inputs" "Vehicle Load Size" "Network Impedences" "Artificial Links" "Emission Factors" "Route Optimization" [federated.10gkjpb1b4lygg106228z03zitbj].[none:table_name:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:measure:nk] Parameters Table - Bin: ]]> Æ Measure: Æ notes - Split 1: Æ notes - Split 2: Æ Scenario Name: Æ Æ Æ ]]> ([federated.10gkjpb1b4lygg106228z03zitbj].[none:Calculation_655273804522373120:nk] / ([federated.10gkjpb1b4lygg106228z03zitbj].[none:measure:nk] / [federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk]))
<formatted-text> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'> <</run> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>[federated.10gkjpb1b4lygg106228z03zitbj].[measure]</run> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>> by Commodity & Mode</run> </formatted-text> [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_MEASURE BUTTON PARAM CALC (copy)_6053400880426811392:nk] cost Æ <All Fields> "> Æ to transport by Æ in ]]> by Commodity & Mode]]> Æ
"Absolute Value" "\% Difference" "Difference" [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY FIELD (copy)_2320198263888973826:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] Measure: < [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY FIELD (copy)_2320198263888973826:nk] > [federated.10gkjpb1b4lygg106228z03zitbj].[usr:Calculation_5919418790820335622:qk][federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY FIELD (copy)_2320198263888973826:nk]
<formatted-text> <run>Top Level Scenario Results</run> </formatted-text>
-2
-2
-2
-2
-2
-2
"[federated.10gkjpb1b4lygg106228z03zitbj].[pcdf:sum:Calculation_1113233534276599841:qk:2]" "[federated.10gkjpb1b4lygg106228z03zitbj].[pcdf:sum:Calculation_1113233534276714530:qk:6]" "[federated.10gkjpb1b4lygg106228z03zitbj].[pcdf:sum:_MEASURE_CO2 (copy 2)_1898267253883006976:qk:2]" "[federated.10gkjpb1b4lygg106228z03zitbj].[pcdf:sum:Calculation_1097470949062107136:qk:3]" "[federated.10gkjpb1b4lygg106228z03zitbj].[pcdf:sum:_MEASURE_CO2 (copy):qk:3]" "[federated.10gkjpb1b4lygg106228z03zitbj].[pcdf:sum:Calculation_1113233534276460576:qk:2]" [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[:Measure Names] [federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:Scenario_Name:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:NET_SOURCE_NAME:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:COMMODITY:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM FIELD (copy)_2320198263886729217:nk]
% Difference from Baseline Æ Scenario Name: ]]> Æ : ]]> ]]> [federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk]([federated.10gkjpb1b4lygg106228z03zitbj].[:Measure Names] * [federated.10gkjpb1b4lygg106228z03zitbj].[Multiple Values])
<formatted-text> <run>Top Level Scenario Results</run> </formatted-text> "[federated.10gkjpb1b4lygg106228z03zitbj].[sum:Calculation_1113233534276599841:qk]" "[federated.10gkjpb1b4lygg106228z03zitbj].[sum:Calculation_1113233534276714530:qk]" "[federated.10gkjpb1b4lygg106228z03zitbj].[sum:_MEASURE_CO2 (copy 2)_1898267253883006976:qk]" "[federated.10gkjpb1b4lygg106228z03zitbj].[sum:Calculation_1097470949062107136:qk]" "[federated.10gkjpb1b4lygg106228z03zitbj].[sum:_MEASURE_CO2 (copy):qk]" "[federated.10gkjpb1b4lygg106228z03zitbj].[sum:Calculation_1113233534276460576:qk]" [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[:Measure Names] [federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:Scenario_Name:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:NET_SOURCE_NAME:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:COMMODITY:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM FIELD (copy)_2320198263886729217:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] Scenario Name: ]]> Æ : ]]> ]]> [federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk]([federated.10gkjpb1b4lygg106228z03zitbj].[:Measure Names] * [federated.10gkjpb1b4lygg106228z03zitbj].[Multiple Values])
<formatted-text> <run>Top Level Scenario Results</run> </formatted-text>
-2
-2
-2
-2
-2
-2
"[federated.10gkjpb1b4lygg106228z03zitbj].[diff:sum:Calculation_1113233534276599841:qk:3]" "[federated.10gkjpb1b4lygg106228z03zitbj].[diff:sum:Calculation_1113233534276714530:qk:3]" "[federated.10gkjpb1b4lygg106228z03zitbj].[diff:sum:_MEASURE_CO2 (copy 2)_1898267253883006976:qk:2]" "[federated.10gkjpb1b4lygg106228z03zitbj].[diff:sum:Calculation_1097470949062107136:qk:3]" "[federated.10gkjpb1b4lygg106228z03zitbj].[diff:sum:_MEASURE_CO2 (copy):qk:3]" "[federated.10gkjpb1b4lygg106228z03zitbj].[diff:sum:Calculation_1113233534276460576:qk:5]" [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[:Measure Names] [federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:Scenario_Name:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:NET_SOURCE_NAME:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:COMMODITY:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM FIELD (copy)_2320198263886729217:nk]
Difference from Baseline Æ Scenario Name: ]]> Æ : ]]> ]]> [federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk]([federated.10gkjpb1b4lygg106228z03zitbj].[:Measure Names] * [federated.10gkjpb1b4lygg106228z03zitbj].[Multiple Values])
<formatted-text> <run>Top Level Scenario Results</run> </formatted-text> [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[:Measure Names] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] Results Summary by Scenario: < [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM FIELD (copy)_2320198263886729217:nk] >< [federated.10gkjpb1b4lygg106228z03zitbj].[none:_summary BUTTON PARAM field (copy)_2320198263930675207:nk] > [federated.10gkjpb1b4lygg106228z03zitbj].[:Measure Names]
"Summary" "Commodity" "Commodity & Mode" [federated.10gkjpb1b4lygg106228z03zitbj].[none:Calculation_6881500271845404676:nk] Measure: < [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY FIELD (copy)_2320198263898841093:nk] > [federated.10gkjpb1b4lygg106228z03zitbj].[usr:Calculation_5919418790815825922:qk][federated.10gkjpb1b4lygg106228z03zitbj].[none:Calculation_6881500271845404676:nk]
[federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:measure:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:commodity:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk] Commodity: ]]> Æ Mode: ]]> Æ Units: ]]> Æ MEASURE_DOLLAR_COST: ]]> Æ ]]> Æ ([federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk] / ([federated.10gkjpb1b4lygg106228z03zitbj].[none:commodity:nk] / ([federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] / [federated.10gkjpb1b4lygg106228z03zitbj].[none:measure:nk])))
[federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:Calculation_532832186146295808:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:measure:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[Tooltip (Measure)] [federated.10gkjpb1b4lygg106228z03zitbj].[Tooltip (FACILITY TYPE,Commodity,Measure,Units)] [federated.10gkjpb1b4lygg106228z03zitbj].[Tooltip (Measure,Scenario Name)] [federated.10gkjpb1b4lygg106228z03zitbj].[Tooltip (Scenario Name)] Measure: ]]> ]]> Æ ]]> [federated.10gkjpb1b4lygg106228z03zitbj].[none:measure:nk]
<formatted-text> <run bold='true' fontalignment='1' fontcolor='#00007f' fontname='Tableau Bold' fontsize='10'>Total vs. Optimal Supply & Demand Quantity</run> </formatted-text> "SUPPLY" "DESTINATION" [federated.10gkjpb1b4lygg106228z03zitbj].[none:Calculation_532832186146295808:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:measure:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[:Measure Names] [federated.10gkjpb1b4lygg106228z03zitbj].[Tooltip (Scenario Name)] < [federated.10gkjpb1b4lygg106228z03zitbj].[Multiple Values] > ([federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk] / [federated.10gkjpb1b4lygg106228z03zitbj].[none:Calculation_532832186146295808:nk])[federated.10gkjpb1b4lygg106228z03zitbj].[Multiple Values]
<formatted-text> <run>Top Level Scenario Results</run> </formatted-text> [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:Scenario_Name:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:NET_SOURCE_NAME:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:COMMODITY:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:Measure (copy)_5919418790824370183:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_MEASURE BUTTON PARAM CALC (copy)_6053400880426811392:nk] Scenario Name: ]]> Æ <[Parameters].[Parameter 1]>: ]]> Æ : ]]> <[federated.10gkjpb1b4lygg106228z03zitbj].[attr:units:nk]>]]> [federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk][federated.10gkjpb1b4lygg106228z03zitbj].[sum:value:qk]
<formatted-text> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'> <</run> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>[federated.10gkjpb1b4lygg106228z03zitbj].[measure]</run> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>> by Commodity & Mode</run> </formatted-text> "allmodes" "total" "road" "rail" "water" "pipeline_crude_trf_rts" "pipeline_prod_trf_rts" [federated.0yva53w01g26mj1b3sof51c90b07].[none:Scenario_Name:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:NET_SOURCE_NAME:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:COMMODITY:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_MEASURE BUTTON PARAM CALC (copy)_6053400880426811392:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:Measure (copy)_5919418790824370183:nk] Scenario Name: ]]> Æ Commodity: ]]> Æ Mode: ]]> Æ : ]]> <[federated.10gkjpb1b4lygg106228z03zitbj].[none:units:nk]>]]> < [federated.10gkjpb1b4lygg106228z03zitbj].[sum:Calculation_1113233534276599841:qk] > Scenario Name: ]]> Æ Commodity: ]]> Æ Mode: ]]> Æ : ]]> <[federated.10gkjpb1b4lygg106228z03zitbj].[none:units:nk]>]]> Scenario Name: ]]> Æ Commodity: ]]> Æ Mode: ]]> Æ : ]]> <[federated.10gkjpb1b4lygg106228z03zitbj].[none:units:nk]>]]> ([federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk] / ([federated.10gkjpb1b4lygg106228z03zitbj].[none:commodity:nk] / [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk]))([federated.10gkjpb1b4lygg106228z03zitbj].[sum:value:qk] + [federated.10gkjpb1b4lygg106228z03zitbj].[sum:value:qk])
<formatted-text> <run>Top Level Scenario Results</run> </formatted-text> [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:Scenario_Name:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:NET_SOURCE_NAME:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:COMMODITY:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:Measure (copy)_5919418790824370183:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_MEASURE BUTTON PARAM CALC (copy)_6053400880426811392:nk] Scenario Name: ]]> Æ <[Parameters].[Parameter 1]>: ]]> Æ : ]]> <[federated.10gkjpb1b4lygg106228z03zitbj].[none:units:nk]>]]> [federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk][federated.10gkjpb1b4lygg106228z03zitbj].[sum:value:qk]
<formatted-text> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'> <</run> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>[federated.10gkjpb1b4lygg106228z03zitbj].[measure]</run> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>> by Commodity & Mode</run> </formatted-text> "allmodes" "total" "road" "rail" "water" "pipeline_crude_trf_rts" "pipeline_prod_trf_rts" [federated.0yva53w01g26mj1b3sof51c90b07].[none:Scenario_Name:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:NET_SOURCE_NAME:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:COMMODITY:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_MEASURE BUTTON PARAM CALC (copy)_6053400880426811392:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:Measure (copy)_5919418790824370183:nk] Scenario Name: ]]> Æ Commodity: ]]> Æ Mode: ]]> Æ : ]]> <[federated.10gkjpb1b4lygg106228z03zitbj].[none:units:nk]>]]> < [federated.10gkjpb1b4lygg106228z03zitbj].[sum:Calculation_1113233534276599841:qk] > Scenario Name: ]]> Æ Commodity: ]]> Æ Mode: ]]> Æ : ]]> <[federated.10gkjpb1b4lygg106228z03zitbj].[none:units:nk]>]]> Scenario Name: ]]> Æ Commodity: ]]> Æ Mode: ]]> Æ : ]]> <[federated.10gkjpb1b4lygg106228z03zitbj].[none:units:nk]>]]> ([federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk] / ([federated.10gkjpb1b4lygg106228z03zitbj].[none:commodity:nk] / [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk]))([federated.10gkjpb1b4lygg106228z03zitbj].[sum:value:qk] + [federated.10gkjpb1b4lygg106228z03zitbj].[sum:value:qk])
<formatted-text> <run>Top Level Scenario Results</run> </formatted-text> [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:Scenario_Name:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:NET_SOURCE_NAME:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:COMMODITY:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:Measure (copy)_5919418790824370183:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_MEASURE BUTTON PARAM CALC (copy)_6053400880426811392:nk] Scenario Name: ]]> Æ <[Parameters].[Parameter 1]>: ]]> Æ : ]]> <[federated.10gkjpb1b4lygg106228z03zitbj].[attr:units:nk]>]]> [federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk][federated.10gkjpb1b4lygg106228z03zitbj].[sum:value:qk]
<formatted-text> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'> <</run> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>[federated.10gkjpb1b4lygg106228z03zitbj].[measure]</run> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>> by Commodity & Mode</run> </formatted-text> "allmodes" "total" "road" "rail" "water" "pipeline_crude_trf_rts" "pipeline_prod_trf_rts" [federated.0yva53w01g26mj1b3sof51c90b07].[none:Scenario_Name:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:NET_SOURCE_NAME:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:COMMODITY:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:Measure (copy)_5919418790824370183:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_MEASURE BUTTON PARAM CALC (copy)_6053400880426811392:nk] Scenario Name: ]]> Æ Commodity: ]]> Æ Mode: ]]> Æ : ]]> <[federated.10gkjpb1b4lygg106228z03zitbj].[attr:units:nk]>]]> < [federated.10gkjpb1b4lygg106228z03zitbj].[sum:Calculation_1113233534276599841:qk] > Scenario Name: ]]> Æ Commodity: ]]> Æ Mode: ]]> Æ : ]]> <[federated.10gkjpb1b4lygg106228z03zitbj].[attr:units:nk]>]]> Scenario Name: ]]> Æ Commodity: ]]> Æ Mode: ]]> Æ : ]]> <[federated.10gkjpb1b4lygg106228z03zitbj].[attr:units:nk]>]]> ([federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk] / ([federated.10gkjpb1b4lygg106228z03zitbj].[none:commodity:nk] / [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk]))([federated.10gkjpb1b4lygg106228z03zitbj].[sum:value:qk] + [federated.10gkjpb1b4lygg106228z03zitbj].[sum:value:qk])
<formatted-text> <run bold='true' fontalignment='1' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>Scenario Runtime</run> </formatted-text> "p Step - Total Runtime (HMS):" "o2 Step - Total Runtime (HMS):" "o1 Step - Total Runtime (HMS):" "g Step - Total Runtime (HMS):" "c Step - Total Runtime (HMS):" "f Step - Total Runtime (HMS):" "s Step - Total Runtime (HMS):" [federated.10gkjpb1b4lygg106228z03zitbj].[none:table_name:nk] Measure: ]]> Æ Scenario Name: ]]> Æ Runtime Duration: minutes]]> [federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk][federated.10gkjpb1b4lygg106228z03zitbj].[sum:_runtime - seconds (copy)_4499940493940920324:qk]
<formatted-text> <run>Top Level Scenario Results</run> </formatted-text> [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:Scenario_Name:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:NET_SOURCE_NAME:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:COMMODITY:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:Measure (copy)_5919418790824370183:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_MEASURE BUTTON PARAM CALC (copy)_6053400880426811392:nk] Scenario Name: ]]> Æ <[Parameters].[Parameter 1]>: ]]> Æ : ]]> <[federated.10gkjpb1b4lygg106228z03zitbj].[none:units:nk]>]]> [federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk][federated.10gkjpb1b4lygg106228z03zitbj].[sum:value:qk]
<formatted-text> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'> <</run> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>[federated.10gkjpb1b4lygg106228z03zitbj].[measure]</run> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>> by Commodity & Mode</run> </formatted-text> "allmodes" "total" "road" "rail" "water" "pipeline_crude_trf_rts" "pipeline_prod_trf_rts" [federated.0yva53w01g26mj1b3sof51c90b07].[none:Scenario_Name:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:NET_SOURCE_NAME:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:COMMODITY:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:Measure (copy)_5919418790824370183:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_MEASURE BUTTON PARAM CALC (copy)_6053400880426811392:nk] Scenario Name: ]]> Æ Commodity: ]]> Æ Mode: ]]> Æ : ]]> <[federated.10gkjpb1b4lygg106228z03zitbj].[none:units:nk]>]]> < [federated.10gkjpb1b4lygg106228z03zitbj].[sum:Calculation_1113233534276599841:qk] > Scenario Name: ]]> Æ Commodity: ]]> Æ Mode: ]]> Æ : ]]> <[federated.10gkjpb1b4lygg106228z03zitbj].[none:units:nk]>]]> Scenario Name: ]]> Æ Commodity: ]]> Æ Mode: ]]> Æ : ]]> <[federated.10gkjpb1b4lygg106228z03zitbj].[none:units:nk]>]]> ([federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk] / ([federated.10gkjpb1b4lygg106228z03zitbj].[none:commodity:nk] / [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk]))([federated.10gkjpb1b4lygg106228z03zitbj].[sum:value:qk] + [federated.10gkjpb1b4lygg106228z03zitbj].[sum:value:qk])
<formatted-text> <run bold='true' fontalignment='1' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>Total Supply & Demand <</run> <run bold='true' fontalignment='1' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>[Parameters].[Parameter 2]</run> <run bold='true' fontalignment='1' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>></run> </formatted-text> "rmp_supply_potential" "destination_demand_potential" [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:measure:nk] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:Scenario_Name:nk] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:scenario_name:nk] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:commodity:nk] [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:_Demand_or_Supply (copy)_803892570930683904:nk] _Demand_or_Supply: ]]> Æ Commodity: ]]> Æ Scenario Name: ]]> Æ Value: < [federated.0w6r3991xjsayc1h2x9ss08urjyr].[sum:value:qk] > < [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:units:nk] > [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:scenario_name:nk]([federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:measure:nk] / [federated.0w6r3991xjsayc1h2x9ss08urjyr].[none:commodity:nk])
"[federated.0biw4sc0geh7th15l7l8h1cmbo8h].[cnt:route_id:qk]" "[federated.0biw4sc0geh7th15l7l8h1cmbo8h].[sum:Calculation_5781777543346483200:qk]" "[federated.0biw4sc0geh7th15l7l8h1cmbo8h].[avg:miles:qk]" "[federated.0biw4sc0geh7th15l7l8h1cmbo8h].[avg:dollar_cost:qk]" 1 0 "raw_material_producer" "processor" [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[:Measure Names] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:from_facility:nk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:to_facility:nk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:from_facility_type:nk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:to_facility_type:nk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:commodity_name:nk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:mode:nk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:scenario_name:nk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:in_solution:nk] [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[Action (Chart Symbology Calc,Miles (bin))] ([federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:scenario_name:nk] / ([federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:from_facility_type:nk] / [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:to_facility_type:nk]))([federated.0biw4sc0geh7th15l7l8h1cmbo8h].[none:Calculation_5781777543346483200:ok] / [federated.0biw4sc0geh7th15l7l8h1cmbo8h].[:Measure Names])
<formatted-text> <run>Top Level Scenario Results</run> </formatted-text> [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:Scenario_Name:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:NET_SOURCE_NAME:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:COMMODITY:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:Measure (copy)_5919418790824370183:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_MEASURE BUTTON PARAM CALC (copy)_6053400880426811392:nk] Scenario Name: ]]> Æ <[Parameters].[Parameter 1]>: ]]> Æ : ]]> vehicle-miles traveled]]> [federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk][federated.10gkjpb1b4lygg106228z03zitbj].[sum:value:qk]
<formatted-text> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'> <</run> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>[federated.10gkjpb1b4lygg106228z03zitbj].[measure]</run> <run bold='true' fontcolor='#ffffff' fontname='Tableau Bold' fontsize='14'>> by Commodity & Mode</run> </formatted-text> "allmodes" "total" "road" "rail" "water" "pipeline_crude_trf_rts" "pipeline_prod_trf_rts" [federated.0yva53w01g26mj1b3sof51c90b07].[none:Scenario_Name:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:NET_SOURCE_NAME:nk] [federated.0yva53w01g26mj1b3sof51c90b07].[none:COMMODITY:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_DUMMY PARAM CALC (copy)_5919418790833197064:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:_MEASURE BUTTON PARAM CALC (copy)_6053400880426811392:nk] [federated.10gkjpb1b4lygg106228z03zitbj].[none:Measure (copy)_5919418790824370183:nk] Scenario Name: ]]> Æ Commodity: ]]> Æ Mode: ]]> Æ : ]]> vehicle-miles traveled]]> < [federated.10gkjpb1b4lygg106228z03zitbj].[sum:Calculation_1113233534276599841:qk] > Scenario Name: ]]> Æ Commodity: ]]> Æ Mode: ]]> Æ : ]]> vehicle-miles traveled]]> Scenario Name: ]]> Æ Commodity: ]]> Æ Mode: ]]> Æ : ]]> vehicle-miles traveled]]> ([federated.10gkjpb1b4lygg106228z03zitbj].[none:scenario_name:nk] / ([federated.10gkjpb1b4lygg106228z03zitbj].[none:commodity:nk] / [federated.10gkjpb1b4lygg106228z03zitbj].[none:mode:nk]))([federated.10gkjpb1b4lygg106228z03zitbj].[sum:value:qk] + [federated.10gkjpb1b4lygg106228z03zitbj].[sum:value:qk])
Legend Symbolize Routes by: Filters Legend Filters Symbolize Routes by: Legend Facilities Quantity Filters Legend Filters Facilities Quantity Filters Legend Symbolize by: Select Bin Size in Miles: Summary Table Note: This dashboard only displays for scenarios run with network density reduction (NDR) on. Note: This dashboard only displays for scenarios run with network density reduction (NDR) on. Legend Filters Symbolize by: Select Bin Size in Miles: Summary Table Legend Legend Legend Note: Icon sizing is removed if a scenario has uncapacitated processors. Filters Legend Filters Note: Icon sizing is removed if a scenario has uncapacitated processors. <formatted-text> <run bold='true' fontalignment='1' fontcolor='#00007f' fontname='Tableau Bold' fontsize='24'>F</run> <run fontalignment='1' fontcolor='#00007f' fontname='Tableau Book' fontsize='24'>reight</run> <run bold='true' fontalignment='1' fontcolor='#00007f' fontname='Tableau Book' fontsize='24'>Æ </run> <run fontalignment='1' fontcolor='#00007f' fontname='Tableau Book' fontsize='24'>and </run> <run bold='true' fontalignment='1' fontcolor='#00007f' fontname='Tableau Book' fontsize='24'>Æ </run> <run bold='true' fontalignment='1' fontcolor='#00007f' fontname='Tableau Bold' fontsize='24'>F</run> <run fontalignment='1' fontcolor='#00007f' fontname='Tableau Book' fontsize='24'>uel </run> <run bold='true' fontalignment='1' fontcolor='#00007f' fontname='Tableau Book' fontsize='24'>Æ </run> <run bold='true' fontalignment='1' fontcolor='#00007f' fontname='Tableau Bold' fontsize='24'>T</run> <run fontalignment='1' fontcolor='#00007f' fontname='Tableau Book' fontsize='24'>ransportation </run> <run bold='true' fontalignment='1' fontcolor='#00007f' fontname='Tableau Book' fontsize='24'>Æ </run> <run bold='true' fontalignment='1' fontcolor='#00007f' fontname='Tableau Bold' fontsize='24'>O</run> <run fontalignment='1' fontcolor='#00007f' fontname='Tableau Book' fontsize='24'>ptimization</run> <run bold='true' fontalignment='1' fontcolor='#00007f' fontname='Tableau Book' fontsize='24'>Æ </run> <run bold='true' fontalignment='1' fontcolor='#00007f' fontname='Tableau Bold' fontsize='24'>T</run> <run fontalignment='1' fontcolor='#00007f' fontname='Tableau Book' fontsize='24'>ool</run> </formatted-text> Note: Icon sizing is removed if a scenario has uncapacitated processors. Note: Icon sizing is removed if a scenario has uncapacitated processors. "road" "pipeline_crude_trf_rts" "pipeline_prod_trf_rts" iVBORw0KGgoAAAANSUhEUgAAAMAAAADACAYAAABS3GwHAAAACXBIWXMAAA7DAAAOwwHHb6hk AAAgAElEQVR4nOy9eZQlR33n+4kll5t3qVt7Ve/7qpbUkhAICSwJy1gGZAkM2GCDPWB7vMzi 8QyeecwA9rw3b86zx35nxubZZzxmmTHGgw0YY8AGJGEJtCEJLa2l1Yt6q7Vru3XXzIyI90fe ulWlqpZaUsuSpfr2qdP3ZuaNjIyMX8Rv+f4ixJe+9CXHGtbwGoV8uSuwhjW8nFgTgDW8pqGX frl51y0vVz3WsIaXBWszwBpe01gTgPPAiZHyS1a2iX1GpoMLVJrg5EjpApX12sCrUgBu/+aV iP0fb/99hKnz+M1XbttzznP/628uW3HsT796yYuo4SLi6X6+ev/QiuM//pO/1nmGD//u1edZ ms/n/vrAiqPX3vKRJe3xcb5478CLrPULx3O12//66sHO54d/sJ2nZ/0XdJ+kEfHhX/8Zwks+ xoa3/jP+8q6Nq16nVz36KsD2A09x5POf63y//f6tbC7H3Hk84mfecpQvf+0gT00rPvyuB+iO UsrFFgA29fjzv76U49Mer7vsFDccPIVNPf7yq5dxZMrjl3/qXm771mV86ksX8dSJMu+9+fvs XV/r3CdpBnz+by7h+GTAzTc+zMWb57jj/i3IVo7bHu3l/bfcz9b+BjNny3z6KwdQNiDc/NSq z/BH/++n+YUbTgDw9NH10DvJlnLMXQ9t5qpLTmBin8988TKaXoMP3fwQgVq9LW7/0v/D7d+8 kn/+p1t4+NP/G4A77t3KjvU1vnZ/H++77gSf+9oBRuc0773pB+wcqnLHPdtp1iPuO1Li5957 H8OlmG9881LuO1bkR659nNfvnuEbt+7m2Jluov4pPvDWJ5AC7rp7L99+qI+bb3yYizbNcdf3 t7J/zwSf+qt9bOi2y9otaHbxl7duJ+yq8aF3PsB3br2ET33pEo6cKPHOtz+A56UUwhiAv79z P3//WDc/8baH2LN+nr+/fyuh8fm7Bwd4z48/wK6h2rJn/uNPX8f9Uymjd//ffP+213HLR27h h2/9rzz00HYqU0UOjQb83LseeHXOAACNWo7b793M7fdvwAB//ldv5BsP9/He647wpS+/geKW k/zi2w/z3z73BgDuuH8bAP/fp3+I7Rcf5SMfvI9v37UbgOMnerj48iN84I1TfPbWbdz0Y/fz ljc8zSd+5TvLOj+AtZKr3vgEH/3Q3XzmL7Oyv/Gti3Hlaf7NTz/In/7VQbAe/+l/vJEPvvdu 3nPt8XM+w5NHhrj93s08dabI08fWd0bDux7eDMAnP/tmrrn2Ud5+cIY//PLKkf/Z8LVvXMHn 79jM+258AmMkN1z/CB/5wPf5489ndf7iVy+jd/MI//zdT/LZLx1g7vRGHpxJ+T8+dBfdOQdo vvTtnbz/J+5hTz7iT761lcce2Mc9E45/+0/u5n9/4RomGpK77t3F73/hct5300O86xntJvyE X/7g97j58jn+8Ev7ufFHHuL6N5zkE7/yHS7ePM/jh7Yw1YQHvncJj9eb/MbP3sdn//SHmE3g W7cfoJ6r8JEP3seffeXyFc931wObePc7HqI7l3DDjfexLunm+ydKfPuOvWzff4xffMdT/M6f XPPqnQGmx3v4xCevhVyNv738Lyj2TfFLtzwEwPcP9+ONeNwBPPh0z7LfVaThyu3TAIReFiPc vn2cncMVmA1pPdH9rPc1iccX/up1xCbl/uOZ7VDomeOafeMAFENBdWyQrZc8QU8+oVFocq6J +KvfuJT772nyzpvv4eL8yvMPHh5i6i+zl3+ykgMOn0fLZPDy8/yLn7wPCczEPp/5i4MYl3B4 JLvRwNA0l22bAgJyKEpDYwSzu/gPv7+eN13zKLs2Vdm66SxduZQ3vOlhvvepK/ne0ZCf/oVb 0RLefdVp7j/eBTh+4f130OevjLeOne7ns399AOcUCXPnrOsdj/Ty4V98CA94x+vGeOhMgaBU 5doDo1mbRivLDoKUWt0DwKU+tcSR81P8Qp29GyoA9HfZV68ArN92hts/vagCRbmk83ndQIX3 vPdO+iPDfG25AaqbAUfG83SJkMnKOXQKILWrn/vq1w7yrp/6DrtKKbO/92OrXpPrqjIxsgs4 RrPlAasH43/9V7/RUYHu+PbriFMJDmYqIQA7to7zr3/xO/gS5mvhOeu6ah3CpDP9/9lXLuVX fv7bdGv4d793w6rXN1uKX/3wt/El/NYfvIUbr7izc+7E4S1EA5NsVz08eLibG/bM8P2n+rjq 7Y/zuDLkl3T+pe32rYeH+fgvf5v6fD+//dmtABizUinZMdDkB08XuXrLPA8e6eFtVzS4c8VV y3HLDY/zT/7gal63qcZ9d1yKt+UEV2ysc1v7vE185mry1SkA5e4Kr983sezYluGZzuefe9f9 /O6nrseIlOGNE/zCOw6xeV12/p998O/5ky8exC/P0V0wAGxe+K1O2NhbB+DAcI2Pf/JaPvDu e9je3+iUff21j/O7n7qOYiEmLM4DsGl4tnN+/eAcKj/L69db/sPvX8dgybF53+MrnuGifacY 7m52vl9++VP81v+4inu7mhgvu9/Pvf0R/uPv34DnGS46cIx3XnOGTetWH0nL3RWu2LPYJpvW L7bH269/kt/5g7dQKrXo6pt7xnnL+sEKppXjv3zmagyOiy89CsDDj2zjtz7p4Rea/KufvhvP aT75P6/hu99W7Nhzgj29MY+sm1mmZy9tt0s2zPOJT17L0FCTLeuzNrpi8xwf+4Nref87v0/f wCyRhhvfcR//7TNv4psNwb4DT7G5aBbfCbBxcOUz/9hN3+V3m/CH//ON9A9P881Pfg1fQDxf 4D/90bU0WpoPvPd7iKVcoLVAGNz69/tp6QaVyT7G0gb/4l2PvNxVeoUi4D//0RX821/87std keeF/+u/X89Hf/7WzvdX5QzwYvDmqw7zwGPDrBs8ynu2n48D9bWKmPe94x/f4PDTb3tg2fdl M0Bf7tF/8AqtYQ0vJ5bNAGcbF71c9VjDGl4WvGrjAGtYw/lgTQDW8JrGmgCs4TWNV6QXqNVq MT09/XJXYwUKhcLLXYVVoVQWXDLGvMw1WQnf94nj+OWuxgos1GttBljDaxprArCG1zRe8QJw 6vhRjp84veq54ydPdj7HtRkefuQxDh89tuQKS7W6yNY88sQhRsbPXpB6NeenOT0ywly11bnX 6MgZ6o3Ws/5uAdPT07RaLarV6mJtkzrHjj1NbGD89AnqrRZPnzyz+KOkzvR8c5XSlsJw8sQJ JqcWqQITY6NU5murXr1U1azMTHNmNCPtjZw+ydjE+bRVwvT0/HlcB6MjpxmbmFx2LG3VaCT2 vH7/UuAVaQMsRZTPcXJslmOHjwEJoyMjBF5MU5WZM5rmfBXpeeRNzKY9+xh54kHuuvsefNsk 9kr0yBqn5y0bdl1KIRcyV6nQrE2TzJ7iyERK5BXIlSLiZg0/imhNnyYMc8i+HeSaE+R6t7J9 08oEEpvGJKllbmqcmRnNxnXdOBVhmvOcmBghtgppE7Qf4NIWxhpsAn7Owwofk8bESYvq3Dxh vojnKboLIY1Wk1aridMek2fOoHI5Tp44jsRinKDaNIwJyb7d28/RYo6kFaN1jZPHZ+ga3IDn aZrNGnGrQX1mktSLSCz4AsJcwOjoGZQO8UioVqskZgCpA2wa89QThygU8sxUGmitCfN55qt1 SoEC4UiRhEHXeb3LpNXEWcXpkyeQ0uKHReZnZ/EKXcyMj1Du6aWZWHZu2/TCO8zzxCteAKxz FAsFNDEqLGCtZbB/gOMVzYEtg4SNs8x6vawfyvPkU09S6lvPwLCgNldBhhE5kdK9OQLPI54V FPJ5WtVpuga2culQgBYBiQBfA1gqxRyBpygNbeKxB86w99LVs6e8sECuVSPKR8zOzaNUjlDN gwrwg4hyPo8Sy54EEyfU45R8FFJvJhSikNDzcCYh8fJIJejt6UYKQaFQIghyeJ5H3FRoP6RR r5Evhjz7eCnJF/KE+QLT09N0RT4zDfCDHEmzRpjLUSMkT4If5ojCgNmpCXoG1pHUK5RLWaWV dAS5IqHv4fs+UbEbIQRxagiDkCj0wVnq9Tq5/PkxUXv6h0jTFGc9pPZo1ev0Dw7RSg3+4CBh FBHEyXMXdAEhXokLY615gZ4f1rxAzx9rXqA1rIF/BEbwGtbwUmJNANbwmsaaAKzhNY1XpBco CAKGh4df7mqs4QIhCC7Uwl8XFkEQrM0Aa3htY00A1vCaxpoArOE1jY4NUC5fyu23P/0yVuXF 49prtzA7+4PO91fDM63hpUVHAG6//Wl+8zdvfxmrciFwLZdeuvjt1fFMa3gp8fKrQL7H9o2v TIrBGpYj3xWxfWOBvXv6lh3fu3fhu2DP3p6VP3wWdA0U2TiUY+/ePjZu76Mr3+6SSnNg//Mr 64XgggvAhz5yA1fu8Ni4a5Df+PUr6e3L829+42re8oYhbn7/Zdz0wxt4xzsv4l/9+usZGiry kU+8hV/5qR0XuhpreAEobRziqZP/khuvKLFvXz94Hnt3drHn4mEu2dtNvpxn03COj330GqKu HG960ya6IslHP/YmLnvdegLt8dGPXoWfD7j6qnUdMuBt9/5TPv7xa1nXq7nqmk0M9wV4oc/V 12xk3YYSw30BH/voNWza0ce2bcP83d/9BBs3Ftm7q0y+HHHV6wYRwIHL1rNn+4Xd/+AliwP8 0q9ezqkjc/y7j76Zb37lEO94536G1wU8+WRIeaDIYyOOX/u1K/jq3x7ilit6X6pqrOF54Edv 2s1//vitvO0du5ksD/PgbUfY35vSGFjHe35iB7/10bu4eH1GbNuxb5C3v/difvpHhvBLEZdc tY2bXpfNBL/9+zeRV4437HyQ//LZo+3SDaW+bt524y4O/soBnpz3uPOvDzG8v5eu0VMAXP3W Pdz/ubuzy4OQm350Ezf+zFWo1HLw1if48AcP8F9/73s8cbRywZ75gs8AoydneO+Hr+GBu06y bdjn1tuO8uPvvQRRmefQmZS5yQqHn5zi5PFpbrvtad52426OnKw+d8FreMnx1jcPs2FTD/su 38RX/uYY/+fH3sDX7pnj/e/YhPA0uSV7Vfz4+y6lOxBEeQ9nLFIrms0UAO1pKqPTHBvLkoPm x6b5zd+8g/3X7WHXxpBc4J2zDhNnZkicRIhs+vACzehT44xPVPn8l4/y/p+6sGtXdejQP/hB +SUxGAe39fML79vDn33qPo6cea5spheHj3/8Wi69dHEh2pfqmV6t2L+/n0OHJtm9v59jT83y +sv6uPPuUS65Yj2mFTM2UiPnOQrlPCNTTTYO5kgbLRp4rOv3ufeeMXbu6eb4qRpXHhzk8UdG OTubcNFF/Tz66CR+FHDJ7hLVpuPI8QpXXjHIseOzuGaL7oES1RimT51lePsAzUqdYl5zaiLm 4IE+Hn1ojJ37Bxk/McWJkfoFe+aOAMzObuHTn/7Bc13/isbP/uyllMtPd76vCcAangsdAbj5 5ptf7rpcEHz5y1/ufH61PNMaXjq8IslwFwpzM1NIsfyYVAr7LJlT80kN4a2edCiR5EmoIIhN E+cczlqkUuDAOYcQAiEFQiw3rwQCLXwsBofDkNJKGzjr6AmHsDYhdjGunfDorENaia9CIrl8 exjrLM5ZBNnDCalwzjJnfbpEln8shERKCc4h5eKmFK4yzozNUygV8aUDIXDOwkJZAEKAW0wU dDgmJqcpdZU5ffo0YRhijEFrhbWOcleJynwV5xzDQwPoZzT6kabHjnBlqqMDrM3sBilUR+/v tLfSVBJLbKFHZ+0y7SbpEf24To1fHJYJwKFDhy5AkS8f9u/fv/yATVG+B85h251CSYFNVs87 dUA1nkbK1QUkElBzhhqKhq2SpjHgEE7inMs6m1Lg2h1IiM5LFUgiUaDq5hBGkIqUajyHSx2h zqzL2DRwwpGSotE0G3V6w0Fon3fOYZ1FAGkaI4REaw9nUtI0Jgw0Nm4x02xS8iRSquyPttFp UirNlFJvgCZmIbnYmqwTKpV1B2uz518QHOcs3aUckTfHrk2aWpynWMhTmz1MUNgCKEr5PmqN Bp6wOLt8ALlzzmeHv7zNnXOkaYxUOmsraTPBA6wzKOWDTSiQ0gKwELsWZ+xT+FJSEBfGHbpM AL7+9a9z5ZVXXpCC/6Fx7733rhAAoTQmydx2UmmcsxiTIpXuvPQFTLkJuumnFSfkwtWdY5FL mBYhqW1grUWobJS11iKFRKsA61KsTUniGO15CLV8KyWNR2yaSCUoyBKe8pGxoDsaYJpJanaO 2DWRIsJXAXlR7PzWOYcxSWemcS67r3UWT/sEJFR1HhmV0K6CQHQ6ddYIEk+ClqL9e7dspO+0 m5AYkyKE7Fznex6p8xCqRMk/DrEhV9ze/rkDZ8jngvZsshxvLa90fjhnkVKh2kJmnEGhiF2L BnVCWSBIM8EN2q/DFwH75WW4c2wp9UKwTAB6enrYuXPn8y4krU7yJ5/7Ej96y/vY1L8Q1U15 8IF7mRqv0zPYS67Yy96d2XIXJ596mG/cdjfX/egt7NzU/6IfAuDIkSMrjtk0RrWn44UO76xF +2E2yrVf/pyYIeeV0NZrJ5ivbOCS8olNgnWWVBiEFDjbvs45tA4QCKxJaTbqaK0RclGQZNvj LFFo4WFIgWxmkkLiUkOP7EMqRZqM44uQUGf1lDJTD5RSGCM6I6XvB9lxsTBSO7ykQiA1delT FMs7o/ICDAprUoSUHRUK6JSZfRRoveiqNCZBK42QAmssjjwyGOCBBx7n4IG9i+21ijABDHsr Z9SlahlATIuWa2Cx9Ij+bNaStjMbdX4nVt+bTUiZzciO5UL/HLggNkBaPcvjx0fZe+ge/v2n vszb3/46uga2MHXqCLTgwYfvZ6Tu88aL1hMEITfddBOFex5l/NCd3HWXI6md5czoPL1+hRlv E//+X37oQlTr3PWNm2g/zEY3a+myvRibZqOXWHyZ0oGVgkEvR5LMMkO7QyIx1mKNwVmLkAop FKmNMdaglEIHwTKdVrWbWqKQWmFsikdAmiZYspfsrKXodaGFJC+KOO1I0pjUJHjaxwGeFxAn LaTIVBycy0byNoSQWGdoyBY5PDy3dKNpgS8dQsjOLLKAxAme2bWUqCKpoz3AVXCJxaOOTaZB +2zf1JUp4hdgQA4IiWl22smmCVLpVWfr1eCcQwpFYmKU0pmdZO1zCsMFEQDpR9zy7p8kXz/J ZZfso29ggERIBgeHcLGgf9tOck8cYWO3Iu2/GICBwUGuuvoA933mbxkIUvqHhtjcs47NxX+Y RZGcc6RxNjULKbnzzgfo6irh5SSl7jyVqVl6espU6g2aStNIHVER5mZqmMShtCKxCflijmql zsBOcFiklKgwXNa5nHM4YXHOoUU2kgopaZoaQkFTLG6yp62mILsyI1cItPJITbxQEJDp6FLJ TtkL/wshkFJhrCVJUs66KYa9xfYUQtBotfCFQC4Z/ZXS3D4X4kvHm4otFDUkVawrkrC4LpIV FmNTgmgXyJiewgwifgSr+xA4nMhjWNTNpUiRbgqBxFgHQiFJcKKIIU+Sxnht+0YKSRc9TLlx DCmKrOMrL4DzEIBsILCAawuDxJ5HmPeCCIDfs5k39wDs5rJrVt9m84br3sQdt97GGy7eAsAP 3/AWjj/+ALfc8nbqM6Ps27vvQlTlvGAWGnYJrLXEccLMTJWRkxPs3LGZ2ekET0ErrgKSqdNV gnzA3NwMW7dtZq4yx6P3HObig/txqQGZdbIV3gyhEEhqVMi7InHaJLFNrE0x0uDIhEeIzGhN l7xwKSXtCaJtA6SZkGm9zNi01mBdNuIpIejRPTRib4lnSiJb8zRVRHlp3aRhzuQYTTWXFxJa do5IKRI3uLLhXDZLIQRJqmiYLeTVCaS/EWMM0s6h7Rmck0glsVZj5FDWIbUAUlKnOdZoMOxP UdItwMM5i1UDTJkpEpcQ0yIn9OJNV0HqErTI1DTbtu2EEHh6ceaV4rklYIUAqNpRpMmoCVYV MPlzLcH3/PGm669b9n3r3suyD0PPvvn0hYR1lsw3usTN5xzbt26iUCgwN3McrzxAEGkiKwBL aJtYncdHcfc9jzO8vZu4NUlONrnkTTsJI4mRMVp49EuDFIJZ4ROTjUS+TQlslVAGNISilqQY Z/DJoaTGUx4CiVIeabL62qKLI7xESw8h5TIBSAwoqTM7xDlCE+NFfSjTohXHhLZKfPZpZH4r HuNYpxE0SVJF3sV8oDdCWIOTRYyLlt17oXM559BegGvbT1pCw20mH5/AiXUYikjdBUKSmLSt Hi3MWg7I7KttYUjLhiz4hYQSKDNGtwyZsvZZNarUpUwziTEJOfKUdS9SSITyVgw854MVAlA4 +Yf48w8DEBcvZm7vb3Po0CM4qblo797OdfPVKjlf0UyhEOU6x6u1KnFi6Cmf33qR/9DI1AeN WeoKdY71w/0oN0WSGwAvxdLmtUiPnAhIpEbGk7zxzVtoJDNEXkTLSlomZSY9S1H20G/rTMoA CxRMgxwGcBiZI/EGmYkrrJN1hJYIk216rbQiTxHI4gerQyxTcRbq3HkmZ3no0cdpNJqsXzdE GOZIk4Snjt+LpxR9fb30qjoV3U3t7EmSwQHm52cIwyIIR72WsmFdRKkQrX73toEppUZJ1RE8 47IlJZ3sQrkKhhLWWlhl8cZZN0UkCvgyxDmLJxzOtb1R1pGKQZSboU8ojMut+P1iS4jM3nIx OJfZXHJlDOF8cV4qUCIUjbkZvvm3fwN+jrNjk5R6y+zdPMzJsxXiWoO+/jIjo5lkrtu0g6NH nsAimZs6y7rN27hoz+4XVMELDpf50MOwgE0zIZC08OQ0LVtGySa+zmUuQAc2aXC2CqdPPM3e Szch0hmUV2bCNZAE9Isq5bCES6epekPUTba1ahMQCx4LlxCkdUgtsZYMSEFDd1MVDQIdkFca a92iV+kZWBj5l0K6WaRogU2xTiAFSCEw1tFoNDgzMsrgQB8CyHuSp6ctMEVXqcTk2SkEcOTo Y1x/3Q9xvPo0I2MTlHZsWfX+Ukh8L0R7wbIZylPZZGpcHu1GESLA4i/3LrVhhWOOGYSVxEmD vC1Q9LuXXWvoRjGHYhxnDCJY1xaoRSihcDhSExPQm9kJcnXP0FLMuLMUKaPF8i5/XgLQqs5j haZYLtPbO0CrMkd3d18Wv5CafXt2cHJsjGI+IlxKGQS2bN+FeI7lXP8hoZRGLhhJCBRzCBok rCNOYpquhlESTwXIuIWdn6FQ7mP/RV3Mp1XAQzpI0hbWpZwEpGji6xItM7X4Qp/RB1o0EVIw gaFAHt9V6RMhjThE+DU8OYu1XQgRrfClB16CdT7SzSFIkCLBihKJ6+rEGfbs7sL3PDyVYOIp NgzvwzqNbo5zxt9Mf1+LUEzhMPRH64kbCft278D3NOuHBykVVx/9l+KZ9VJLZNLI9Ug3jXJn MXJj59qWa1CnhhU2M4ZdQtqMaeg6qeknEI6CWhR8QxdCdiO0RJmTOCOQagDrsueUSiFTQVGW 8VV43i5PjV7R+bPjz0B10z9dZgMAvP7K1y+7ZueOxVjBgoWwYdPW86rIy4HM7WfbnwW1tIJN UiImSUU3xg0CDiEFWkiUyHTppkupK8F6O09Nl8AmOGdpkWR+dJupJhZLbFurjnwLcFiU9mml dWZt5tXRQjBjejhT7+NgIUFTRbkRnPMAh6SOI4uUSlHFyS6cKJJYueh6twbnHKGfqSepMfi5 TURuBKvWoVOF1xUw3gDrWpn5o1K6ivlOzcqlzCMjtb9a1QGQymOqZSmfc7B1WNGNEAWUHScV WXwnIcVgMGlKw9TQRkPqMF7KiZZhR6AoPEPrd86CE6RyE0iBTE8hVBdO5Dk6foSp6Tmcs3Sp 6rLf7N650l61NvOmFUV5xTlYRQCO2i3UTFahvBBsOWeTvPKhmMEjxVmyII6VWD2ASidQVmH8 3R01CACRCYhxCc5aUtemBAiFaX+2OOK0gXEpUmW6p0CghMa4VfguC/5260hoYZMULwjACnwC 5k3ARbk0c+PpbozNo5TBCU3qJNga1mVBtra7aAVSk3Tqr2QmMKlYh0hGsa0xIn8PP/i7b7Pv 6i10iwidKozKdOcFN6pW5+bo01bBcuJZli5vx1QcGoFBSrAWCqKIdJKzdhSXGlwqCP08vg4Z FppArK4dSKU6UXwrhlC2grCjNGdnue4NN3Lvvffi53IopVBKnWMFaoF1Bk9nbunV4gkrBOAz R1o8Npu97H1lxccPRhw69AhIzf4lRvD54snDT9DTXaa/f2jFuVqtyszZCcqDGyiE5x59XiiM 6G1HbC04kMogk9MkOk/LBHSZtDNmCyGYn2/gihaTJjjbyigAQUicNvHDMk1TRwmFh49QErfk 5Rm32LjLgkwL/6WCOG1k3hvn8HWIMz5SWr4zr/mhYsrAAmXHZt4S51IgeE4DTwoJQmDSBNXu yM45nByi0ZujOPYYb3zDlUyalKIfIKXCWrusnqvdw7YJdw2ZI0oaHUrCc8GpQUgnQWazgIdP nx6iSoWSLtNQdXIqT1mvwrkSAq39FeqWoQSyREJmY6Vpyvj4OL29vcRxTBRFy0h8khaKaTzt YZNRpIhBrsOyXNU7LwVqbHISEJw4dpSu3p5M4hoNjEmYmm/h2wYbN21hppaQUyk6FzExPs31 b76cViqZnBzj/gcepBBF1OMEHXbRX84zduoIB19/NYcPH+ayi1+CXerdcsPSWgVymIKzbcZm 1mDWWdI4pinmUcLiTNb4SmfNE8iQmmkuKdZ1ordL1Z4FH/lSSCQaH6NTAi8CASZJsDZlJvWZ T0OKwnK0rhl4xj4T5+vZEEKSmrhNfntGL5UB0ia0dIiLDbLtaXLOYp171pHfmBSlNCVlSd1i 53ouWCvxqGLpZ9pNkriYnIgY8NcB4Luw037PhPZ80jgztOuuSpMGEXlCkXXcgAgEsqEAACAA SURBVJBHHnmEKIqIogjVnoXHx8bYtj7jL2E1mFlSf1fmslVZKEVRQbtRrBrC2qwdzksANm/Z xo4tWzh85Chzs2exZJ1H+wG7d2ykMTtBw8B8ZY5cd6Zb7tu3D88LMWlCqVRgx+69jBx9ktgq fBKePnmKrRs3kLYaK4JSFwoVN0M3K2MMUsg2FyiLhwqyQBEyCzRp7S3ybYQmsdUlo70g9PI4 6zBtN2fG9ZQkNul0QCsgZyOstCh0m3sDCXFG5nKQOkufCriykE3fzp1/6H8pFtSw1TpzThVw 1lJSMWOJgDbhQSm9jEKxGqSQzLuQ7rbf37X/VggZPIMB6rB6GO1mMmZsu92WlrvAjVqA0n7G g2p3fusMLZqkJNSYJ2yP3Lt2bCVJWotMVyFJXcLAxhyjtkqX6CKSPqierPMvgaGEkGWUGWuH guxKAfjgjoBa2rYBdFbpHVu2tG++nUWzdyn2nKMJYbC/zLrh9QBsGhrEaZ9AL1pSY2OjXLT7 pVkVwpfn3rrHWIOnvbYf2lClgrHgS7WMxJZ3VWq6CxYMV+lhhYEFnZxsNI3TmJCIpqm3eUQa Q4IIM15KLZ6j6Hej8dFojDVMNnLsKC6J5raZqlJ7y22TVeDaFG+EQEmFPocBuyBMoVK4uI4j v0ztezYopalZRZdNll8vsnnPGLNCGCrtTl+ijBKOfhFTI8KewxM4GiuGg+xc0lqkhEih6Kav XeZimqtJs1F+qbAnxMy7OXzhE4oIew5bCbJ3lYoBtB9g0mSlAAxMVTD17IFV5EHxxUVpFzo/ gB+uDHAMDb10q0A756iR7WC4lFa8ANFmcgkEjaSJoYl1GrkwSgoPRYvELhpYUiiqdm6ZwZvZ GA4k+AS0bBNP+igve0nSKSQS5wye9LF6QcUCXyx/UwtMTaU9zLMIQcYOzYRr4fu5YJMmSmnW 5SUPz1ouLi8ygazN+D1Ah5ezFOsDR9pMOozUBbXRWNvW0zMBSEVK09apuSphO5BlXA4tLaFd 3cXasjCeSE6aPPv9eWIr6fEsxqVYLJ7I6lNa4sFZylLtlEMLiSCiiMMyak/RKwYIxLkDas5m yUwrBOD0Zx+k+li2lWVhXz+7Pnb9izaCk1YD6RfYtztzn85XqxSX7LdlbUKzaTh56gR7dl+4 gNmoPUFTzLNFrixzgTsj2okr+SBPrV7HtVmeeSUpuBoVkYN2J5Miy7yy1mCxWac2FmssQim0 8pFIRCrxdYCWPjU7j2cy4UhsgpbZSxVCsCnf4ESsKcg8PUuy0Jy1mXS0saCLr4alfJcsU8wt DwwJgVU+Iq7RE2lOVODEfMrmoiaxMNby0FLhLPRJt8zQjWWAn7ZWv7dgmX01Y85iSHE4YtOi IWvkRB6b1JBeDvsMZlrLgkeTi3MtvEDwyJzmRKy5vmuGGvPEroVCERIREOKLRTU5TROU0h2h L1DCEz41V6FJrT3YnXtAWDq4vORGcDNxNBOBbc3yxFOHmK/VOXlijHUDvSjPJ5cvMj1+lNiW 6O7JP2ddni98AopiOS1jQfcVQoIzWGtQRma8/HamUqQ00yJa5t0RCOq2irEpAoExCTiykSbb NZQkaeGcRUmP2DWx1uDQlLwemnE9U13aqk5ZJhTUHD1q5Uhlkjjj7yetDg/nmaP8AkcHITK9 up0cA9nILlVGW5D5bmzSQIZdXF6G+yct3SE83fLYGyX47b55oqXIScdAWxgTJ/DPYSdIIWG5 nKGcIifyxLKZEdrI4/QQKn0apzYts6GrVnKmnrInrDIlyiQu5S2lBgKJw/G92c1c3X2Suqtm kWgyAbDOYp3pEOEAtNBoCkQiT+oS5pimyLmpOFm6atv9e86rluDFGMHWWJL6HDrMM3P2LEbn 6C0XqdfrlLpDRk8fp9zbj265zkh7obDe20ZOhSjRlvgldGKlPbCLnhyfAOE8rI1J4hY1FeKp FCcVth0DiJMWtXQWISWBjkiFwyNASw9s1iEBwlwBlMAYm7E8F1b7Q7Uz0ha9NZ489zO7Nm/p XDDWZEa8lB169IKQZOqJagucgaicCTgQKXhyqonSKV5hsfzNQfacU6lECUGXb8HQSSddyXJd MvtgKYluQpFb1qucsxi1EWVPtyPE2TvwhaNGDqgz5Bv6OzEGn27Xx/pwnvm4i61+rpPwkxX4 LEkxCDzh08dKl/sClPbbqawZVrTuhg8cXG4DcAGM4Iv3rzj+TDXIOcfI2Og5y3khCIyPcA5D jFReRjZzILWXBW1cprsLIWjKBsLL1B8hJXXn0+fqNJIcqcu8O8akGSNSZcN9pEudTpC2gza+ HyKlIrYtHDbL8RUpGh+n2lwWa7FkalS/PPfLyuwBhfIChMg2mgYW0xlxKOVnM1G7TyybLRYM 5cYsrrwJkzQRCDZGgtAPwFmOVwzbSss7VK+2GBUgTGuh0GWZaashR4RmdZeqcwKr1qHS06Qy swmLynFVSQEDqIWcZ2uz2VFIDuYUmrDTvgtGv1J6VS/UeWMJQxVWEYD6wAQtkxmOgSoSreJG fD5YagQvRfEZe+4KIVg/vO5F3evZYE3S4dUbawjCPOAwSYxzjrwoMSPmSFOJUoo0NbT8AgNu jkmKpCZBCEng5XDt9u+8HGvbqyR4bbUq46ubNCF0ObTXTvpYcNuZFFxGa46J8cm8VdbaFS/X WZPtMm8N2g+J40YnTpEFjNwyrxUs5CS00yRxqCBPbNK2/WIp5YL2OYVNWjiXsT2FlBmlWgiU Szr1ydSdZ+9056IadNrfSlC9KDeDeUafMkmMaSfIL+jnS3V+oLMgwHPT3p4DbmE9CUfLNVcK wJ1nfoeR6v0ArCtczs07/3vbCPbYv3flSP/QQz9g3VA/DafZNDS4YmRvNWqkaPK5gJEzJ+nv LfP9Bw+xdecehvoWG2J2aoqgXCanXvQjPjcEGavROaT2kEIgnWPY28DI2Ch5l0MYhRMBdVci iKfxVR9CwVx8lko6j9IWX2hSF6OcphLPUfJDAp0jtQkkIYGOUGiSJIFU4Pk5HJC2soCZCDSp EMzEtYxVaQxBEGCNxfd1x+uSjbqOVrOO9gKQNuuwLI7M54IUEmGz/GMpFGl7WRbR9oH1hjDT tPQsCEXbKSClwokLu/G2dSEes9jODLbwPhbztoWUK1inS5/lRdfBmvZCBoY61fM3goWUTI6c wODwoxImsVx9zRt54MH7qe7dQaNh+ebXv87AuiG2rR/ie/c8wO79eyhoifPyHHrscfZtX085 r5iZqzFx9x0MDQ9Sq9TwAp/ZiWm6d22jS3g05qeQwMOPP8XuXZvZtv0ihgf6nrOez8SMmyJy OSKxaFw7l6kN07MVarUaxXwepX1m6lN4KiTvlynmNFp5+H5IksbkikXqSYFW0sQPFKGUOCwV N06vHSQvCzTtLL2qC4XG4dFnM+E20nDSHqFHDNAt+rDOEssmnheAhpqdpyvszoI2IgvL2bZ3 ZdpO0koSbGqJVJ5IFJivziGkwNceiUhotJpIDVNnK9TqDTZt3IhWC+VkmVItiqjUYlKDc4JT I6MM9vcwV6ky0N/LyFyDop/DGEM+HyGEIIlbGb9nlXZ9MevxGNGHtFMYsWTp87bQ4RzN1HK6 YdlVCDJ36xJ9/fkku58Tjmw2swYP//wEYMPGjdTrTWozE0SFLipzlWwFAim54tIDzDQtzlYY Huinb90w1lr27ttLuaeXoWLAQ0dH6ekqUCyWkDrgkksvw8VzlPt6uPee+zFpShjlkEmLk+Nj DHTnsdaxb+9+uruLL6jzQ2Z0Lg25x0kLpTNNdWLiLOMTk+RyOXp7uqknVXyVYozhnqPHKJe7 sMZSKBaoVCr09/eTpimz1Wma1YTu3jK+H/B0awrPm+OS/ZmLeCaZpCbm6ZWDhCKi7qrUXRVB lvNab1XI+QUSHZNzETmitiG7OIrL9rrikcxhVUwaGCLhkxcBudADl41kWnsEbRfO6foY9XqD hx5+hFwuR71eo5AvoL1MZ5569BjdPV3EaYxLBUeOHaOnp4ez0zNopbjryRkKhYgd27bSEPMU RReNuIn2FMopHDCXzJIPIqwzGOPanKZM7zcJaNXOVhMQJym+l8UprHEoKfE8jZQC7WKcBkHW 8dM0RnsBZ2sx362FHIhi0iRBQGc2eFF6/xJkS8lk3b4gSisF4Jr1/3qZDQCwe/u5l0o5cOlz ryP0luHNy76vLwBkI8D1111/XhV/ISiJMmpZcrrN9GZrKRYiurq2c/rMCGEuJAh8nBDMzE6z YcMGrDP09/fhaZ+enm7SJEZIQT6XZ2AoT6uRvaTBwcFlq8DVZY3QRiinmWeWM/FxDClVNcfj PMB6tQXPC5gyE+REhC8CjEtxIuOsLyB1KRZDKCKcdSSivb6RkJkKZ2Kc052Rs6+3B9+vkc9H KK1RcjF7bGb8DNHmYXr6i0yOzJKqBL9Qprfcg7SK0Zkqu3bvwlCjkZ9GWUkkferBNE0MOSLy okgThyPLg3DCkroURxbkM4HBlwXyooDDosNMzaqTBcd8GzLvUrTzCNMu/OQUCf0IBHGaon3D Uw3NNjdHrlWjZnPEroU0frbEDA6HpRbXUVqiUHjCI0kNge+13dcG5yDwdWe9JqUkSkqEFIyM TVKvN9m/bw9WmsyTubTDFItFnnhgcsmRJrD0+ysXxeLKSO8zsXQFhXWD2awy1F8mEQkIaFZT onIJzwvw/YipeJRhPYg1EZ6oIDAkiWaGOWIb0+fKeF4DmdtJGsco36NkegnTAAz41qdJFt43 aQo6WwGiZRoMisw5YJ1llmkSG9MnhzpCoITEWIPvfEIijDEYsRgQ08rH2BQlNalNGB7sY3hw +Uy5wOYcKO9EnH2S054gtykhUBE5+vGFT07kmSqtZ7hsORPP4Ls8qYiZcuNo4dErBphOJ5kU Y0QyT81VOzyeQIR4ePiEzNhJEmIEMGUnQGQBqhwRochIa2fdGA6B0y20HCJvz5KKYfIECCk5 mJPMxCFazxEgmXITbJbZ4Kv9kEYyz5SeJlUJZdFDXqySuA/U4yq+ihi3EzjjsKlFOMnJ0XFs Ijj9rdvI5XKYNF0uAO9+97ufu6f9I4ZzCxRgyULe6pSdwLiUHtFPrVmjGAQEKsJLA7qTDUzN z9HTVSBtz1gy1PSTuSMtIcqcIYlbeEGOWTOFJ31Cv4BAkCQtdrqLmLVnGY/P4DmPCT1CN4uL gTVpYMgCa0sJYgJJt+wjTpoY2tz9hYW02qxPm5olz7YyUCbaucSJc8zqdZx+7BQXX7QTIwwS gUJzqO5xoJR5YgbFerT0mLYTxK5FyzVpuDpIkFYQUaBOvZMwpFB0tXX5WJVouQYIsmAYrQ6D s+bmmXFZMLUoyhkp0KaEgo4BrLSPFzcZ8GDSeDRlgw1iMckqjZuEXoEhu4E6VabdBL1yaFWG qtSCacaRfjYAWLLUzaHhQbZv3Myjjx0migqcOHFiuQB84QtfeB7d6ZWH5xJg0ebMe16AM5bY tYhp0i37EE7itwlWaRqjpCKKcp1tfgCstEzGpwhESFGWcTbGmBYyULSaNap2hog8sciys5TS aOfRbfs4q8ZxPuRVVxYsIlsNrSoqeDZAm7aP/RkWpu9lLtKkbQwukCudcyz8U1JTNXMUve5O h6i6Ch4egcxhjKWnt4d1oeEwpxhmE74IEFIxGGmkElmSflYw2mmaroGknX9LQkGWqFMjLwqE RMy6s1hhqLsa4Gi4GqGImHezmUvUQdM1CEWuYwMJIYhpkriEgijhZAnfnsLpIaaTWSJXQAnF w/NDDAWG/bnlXCiTtAhVhJVQdiBF5ilzxixbQS4n852GmnLjmbqkAtatL1BNZijtgDIR+b4t ywVgfn6eG2+88Vk70SsVX//615/zGqU84riJ314VTjnNoNiAlIrZxjzjuRMMNgeoiSob5Q6U cAR+pkcnMuYMJ5l307QaDQaCDZRlL/m0is5JmjYmtQlVUcEnJHExBgcmRSmPPblLmUtn6Eq7 MTJTZeapkLM5AhPieyEt1yRgOYPVukyvFYgVgSgldccmEAjm7SwRBQQw7+aIbB5PZe5NrX1a jQlEPqQpmoQipNU8Q2z6acqIHFlEWQiBstkI73BEIo9AEhLSpEHVzbeXdjRE5GmSbVZRECUU uiMA2SrYljnXxJKlJcauRUpCSXST97qwOKzognSGvBmjqdYRUeSaUpMjLY8nGpr1vqG4JGfY WYtnFGW6Oe4eY4PYilZBhzYyYyeZcVP0yH7KopcNYitVVyFSJWQCVRJ6RD85cgTBKl6garXK LbfcAsA73/lOfumXfomRkRFmZmbYt29f5wUkSRYdbTQa+PEUv/3Hf8G73/0e0rjJ5uE+JuYq HH70fqZG6+i8T6y7uOGaS7Oo69wYn/38V7j2xls4sK2fSiMhjg3deU1LRAz3P3tQ5YVCSU1s m7T9D5k3xbUjnFayTeykwTwt3UJ7IabtizbOcCx9ssMLytl8NgIb2w4sOgIRZmmSwsdJR0yT VtqkJzdI3GqgjUe3680yt2xmgBVEkdg0O0Z0IFbStyfcKL1ugAY1jDCELkIbjad9ao0WjUaT /t4yBdmFcQaLwRM+nvMQFqRWPD06znB3nTwBm9nB7Ow8cW6WWh2mRMJw5DrxhlbaoMVi8o9A UhJlZt00Hh4OR5UKvgjaM2hMKHLEtCguIa0FZLPcjDtLKCKaro4lW1bSiiwKv5j3UETp3XQx Tiq6CLB0ScuZRDFgLU8lip3hIidLCw/jUrpFH0poUtNizB6jqLo5bY4DULfzlFW291xBlZk2 E+3Z0ZGniBQKv7MQ4xIYYzrLpF911VVAln42ODjI3XffzezsLFEUUSqVyOfz+L7PicfuYWJq ji/++Z9y+KkRtm/t4uCV13Do4cfxWgZCiSnt4LvfvYMgLPC2H/tRtm19lL7kDH/yxUMM5OqM js5BOkPX+ov4+Z/5ieffu58FdVelQY1IFLPc0DYFwknLXDqNNIpWS6B8he+HbPS249o0hKqZ 5aQ9QjOpd/YCSJ2jQZV+M4Dyy1hrmIunsuR76WhSz7LAXIr0VMZRNwbTHgkhy+OVCIJ2uL/D +Gyv2ZWmWeJ9kATUxDzzbhZP+LREk6IpIaTHo48fZsvmzRw/NQY4KpV5Bod6GR+botSTZ/rs KFFYYb5aQ2M51lT0iVlGR8fQWjFfrbLj4nXETpJrL7SlhEa5hXpk6s+4PUNeFLPEHrJVqXvk EMalzJizJDrOVqimyIxNKWuoUsHhGGxTH3x8UpcAgpZodUh7C3AOrDHoKMBayyZl2GBiWhbu qQX0aEuvXvyNEpqGa6CcJi+KDLn1+DLiZHvmcmSRYymyBcearRoNV2Oz3LXsvitXhlOqs8z4 8HDG1U/TlJMnT9Lf309fXx9xHC9bq2b3vkt4a7AeWRsnKgxy8JKNnBmbY3hwAzu2biRVIaNj ExSSKQYvfwsABy4+wOBASPHoo9Cqs33/xWzthjP1C58dVqeGISV2LXzhZ+QuYM7NYlxKI25Q 9HowJqYQllHSyzqop2mlTUx7lgj9EkpqppujULc4PwvOpDjqoo5s/6u7GopsA42J5DT9wQbU QtaZaPORpKLRqHRclabNczFpmuXsOoOwDt8E2arQFKibzAPTcDW0ichHEY888ijdPd3koxxS ab7//YfZunUrRw+f4PKDBzkzMsLW3hynZ2uMj48RBCFxkqC1QueK1KxkQGW+euccsj3ix65J Qtxeql2RkpKStA11QWJaeCqgix6qVFBCcaimabhhthTTFUuYp6QEIochpU519fRKIUmTVmfB YTxJhObHeuL/n7s3j7Esu+/7Pueeu759qb2qu6t6ne7p2ReSw01cJC6SlVigIAuCbNhA4j+U IAgiBAnynwDB/0tIHNkAnYgyYglyaNOWRpYsijIpUjPkzHD2mZ7eu2uvV29/727nnPxxXr2u mq4ZckTSDvT7Z3pevap6de855/6W73Kf58DYjPDx6ZsuAkFBWPRBgTJDevgEGIyVxVc5S84p MpPiCpeOaVEy1Qld9V1RKpX4sz/7syOvnT59+gcusi+u2v9+/n3ec/fuXVZW7IT0oYcfor27 yS//4t9h1GszO2s7I4++z/d/0FAoEhOTmwwhBLlOiWQ0PWUDQoQfIUc5HXcbJ4GK08RxXPI8 Q2UJsRlhlJ6ezsNxh2Q0RviC3MsRxqYzByfdNnfJyYgZEZoIpXN207tUvRmKomyxR5MefRiV cF2fNBndA9thpmhFYwye61tZD6oolROYEC8IMDKjUi4R+B7z83OUCiFvXbnGRz70BJtbO1y+ 9AClUsRa3cVrnsSrjymXIiqliEZtla2tbWSlzqnQYCYq14ejRBVXeGyZO3jGSrAHhCihQBmG DKgRIITtyZdElcuFlK7uMzQSgaCEbU3nJmNoeuTkJGbMjFhEui5Xr98ky3MunFmd6Id6KK1R GjrtNk49QxtF01vAlcGUT22MZsxwyhk4POxcck5OodhSSLTQMMFOecJHGUVsxmSkZKT3bwBj DL2e9WENgoAwfG9a4QeNlZWVI/9fn7VPmOLsj8cj4N0RmxEjupY0bjKivIDjSlzpoUxG2ali MAzTfWqijnCsHIcxFmsThEWWxCl8N6RHlzgbMBr2kVLSiOaoS42WjcmJ7qBETqbsKXmQAx+0 XrMsRjtWXl1phXZysjRGhLZAtU4pNjXKUjs7kNKdED/sTKDpLpKpmK7eRyA5sTI3Za8BPPjA WXKV0axZiqk72KYUChLPwXcL1A6JX9XKa7w8kHS0R4khORlaRUSTgvOgU2WBeoah6eNN5gIj +mh5z1uhtdelUk0IxiWSyi5FzuIZn8Ego162JCGNpmP2JqmJIs0No3GC7/ts7nXZ29sjTVKi 4oDhaEg8SiiWSgSRy934bVzXJR7HfPjpx1F5TkPNgoDMpFPWHwZCUSA1KQ4S6fnsputkJp0e UI5wqDND2+yxIE7c7xPc6/W4ePEiFy9e5Dd/8zcBePnF5/n9f/010kOHRD7sMsxhMBwe/f5u jzweMLGMZWNjg263e/wCjWOSJGFvb+8HLOW/aVhMjMTFFwGe4xFEpanezMD02FPbDHWPjmlN PQNUnuJMOiLCkThKMkw7jOMBwnHwo4j58ASOSDCieI8sbiRNMU8gwiMqZGVRpSyq0xmEMZo0 jacozjxL0SonTUeoPCUIioRhCc+zEiZ5nuIAruNSLjYJKVCgOFWksBRKfyq5AuAJQ2t3C1Pz 8fRdfG4hxdCC8CbdpDnfMDKKFtt8uxfy0tj+jMNyhBGWFOSLADFZLpEsTS2K4k1D907CtZe2 uHL1Bt3XDLfu7nL12ga3N+6QmpR8kn46SJbFGqlJcF1Jr9dja2ubGzdusLW5RRg6ZOkupWbE YDTi1KlT3Lm5zt7eHvv7bc6fWyNLxkc0VC0TrD9xpZqc9Pj0aAPQELNsjNf4Zj9gbEYMTZ9A hIQisq4+77t8JgXbWAkWyg7/8g++yqjdouaneEEJGsvs3XqFfBxw6fIZ/vCPv8EXP/kYTqYY Fao0wgJjk1ORhubcIr7v0+l08DyPhYUFrl27xpkzZ4jjmJmZvxne5/1C4uJgT38BExlBu0BS HdNV+zjKpxqUGOoMT1p4cZoleJ5Pq91jfXMTpTTUAhzhUQ48ki3FTbXLbCNCixaO0LbschVU YiqixoDewUUkOqRFo3ROlqV22uwFltQ+Iedbg4eELIttYawVnmtrFjkxwkuTERWvgc5z2+sW TMR+LZxYOA4yHyPGbW4MI+bC0+TJgE7mcmWcshrsEZmcoge5WeJkYNhOHS5FA5pyH/I+rnAQ zgq5gYIJKTlVq8E5mUIfbsV2egOUygjDkDzLqNdq9IdDRvGAUqlAIEJGZkCfDiEFyqJGx9lH oHjk8kWyyTBPuhI8hefu0d3pcupjj+F7Pp/+5EfpdrtUKhVc6RCbMUaNKTilqepDIELGYkRp 4k0QiQKBE03NEBc8xWYeM6Q3fU9N2A7RfRvA932+9KUvUalUWFuzk7h6pURarDK3HLPXXWLc 3aFaqbAzUFx68GGa9SV2N27z4ccvMbd4gkGvx8nlZYQToHVOo+jjR7ZI2draolQqcfXqVZaW LP7/B8lz/E0jFCGhmEdwwOc1E9aWwMOn4JbIE0HJjyjoaKp8bIzG9UJubr7B8sU5dq72cNMK +7sdKHio3MEpOPRGBsyAVmsP1/MoFossVkvISVqijaYmGkcYTAcgNn8iBTNtK+uUhDGBGyKF lSxxhJlKgEy/Xym8ICJLLd3S8hps5HmKlB5i/zr5/EWengtJkzFGO1SkpqtKtFXITJiD3udU OMKhSpESFS8DJBvCo5ft0dCtKWy6IRt4jgQxjzZHl8xDF8/ZbsvUUM+QkzIyQyrColwLosSM WKRtdth1tvBEgM5zCtFxDY+TNBrbRLJFG4XveJTrIQl9fFFFGJBKIn2XfLIBZsQC2jH3JuPC qs+lsc1OFn3FnOcwwEe+i7Rz3waIoojf+q3fOvLahQs/BBn+oePf0263qdVq0xtdrVaP1BVJ kpDnH0wH54PEYTqdEII8S/D9AnmWkGUJIimAzxQ8NbUPAh678DCvv/02lYUirnBwghKhKZCO +8wtzXNgVDc/2yBNU7LcQgzaxqZ0Vv/m3u9vZVuUqdGXXdIJj8BzfDxjAXoxY3wTkB1yhBHC KkQcdE2UztHxgCAs2YaS1ugsn/4+pSxhHMedWjgdxKcqI7rsk5sqnmziObvkpkwFyy3o4bKX b6KFYs8EhE6RnmnTVn3m3BWaagMjV4+oth1MYLXKUdrm9eOohUJTdu65xdRFk1iOLbwjt26Y x2mpOo7Lq2/s8eSjD+CqO7SNnT24uJRFdar0oFQ2RYpKL8B3PbSTT6+bepe2khSSKo13/7rj U6ADXMlxDKUPGvX6UfbPu4vqIAgIgp+MMJaFGB/tbgjukUxKsko6MXA7pnqYmgAAIABJREFU 4Lwm6fgeKUTA6pl5buorlLIybkNTF02qPuwzpEiJHE1BFFCOx77aIcejIeZomR0rtmvunTip Y0WxlKMY6J79HNphjkXrHYZDix1mnUWUtu1QeWAjChz4YGmjyJLxsRIhWinQykKI34Wfb7ED GPu7pEeuq2TxVYwssWm6tPUOYH3MGs6cdW0kYcyQQPtoUcQRMcr49MZQCjniwzwaJ7T29ziz lCFFDtxCZWOgQFGXWS2dp6W2cYXANRp1DLfXGM3qqVWUlhQJyGXIQA2nw0LhOFy/tc7aiUXi PKFQKDIej3FVTj4ZTOZKYxB4rrXFzZWm2+tTKBTwpGX88V7CWMYYfuM3foPxeMwzzzzDz//8 z/Pyi8/z2rVNfvkX/6v7q+YfEC+/+D2CQoQxDhcnsipxHBOGId1uj3Lkcnd3wFyzwv7+/jQt +nGFdH2UVpZwbwzS9dBakeuMTtyl5ln1AOcQ6fvwwrKX0mHeXSE2Yxqhw7N/fpVP//TH2cs2 8EVAkTJ93bXDIOETiJAmczg4eBMZFGXUlB8MTA8WYQQdsU/WFbhVTUU26HVHlEoh61stGrUq pUJItz+kVi3TH8VEgd0YWmg67cHEjGSSRgphPQM0bO/t0axPcuckI/QjRmlCz29Tok5qUvZ0 imH/HtwayaxYpCFmkcLFNT539XXW9U1Ou5dw1V2kM4NwSiTZBpUATD4Ek9EoeNRCA94JUj0x BQwtlJnBLt7uHRayMTqIEOoOvkrJZ86hEZaZ176FzEYsaI3eA4ISFfcafvEyvj44OAXtdptS IeK5772E4zicWFnm9p07FCoRkVfA9+01z7OMXGk2NzdZXl6CcpPd62/TbDTY2d3hc5/5qfs3 gBCCmZkZfud3fodf//VfB6DTH6LHbf7Dv/8qygi294ecmC+hlOFf/f6/42d+5mPU5k/xF8/+ CV/82U9xt5XR8Mc8/fHPo3RKq2WIBzvcuXWLYa9Ft7XHmUce5eXX7/Dkow/iCM07b3U4f/48 SZL82J4IRitUrskmLU0m/Nmpd3DqIUt2IW6KO7iOTyWoIZVA5xnS9chUQmDsUCVTNTLd4WM/ 8zQmz6eG1ilWSLcgSsSMEEbcZ+ScEiOFawc3hzkKaJJY8eJ33+TygxcxRXjl1ddZXFyk2+0x HqeM4zEqz1lcXOT27Tt8+ElrNLhPi+9feYtGcQbf9SkVC4zGMZFX4PbV79FoNImTlDiOQQg8 T7Lb3uGRRx+gp/bJtRW8mnUWWdcWQhAQUhH1idq1HRiuOuet26QxjMUsBfrUgzZXskUiY3C8 BUucVwqkmZpaA/gHLfqogQ5rZKQEIuRAUku2ruKpFK0y9Ox5kvIyYN3tRR7j9DWl3jvoQhNV sa3MdqdLtVqjXq9Tq9VI4jHVao0zqwu4js/mbgvX9VlaW+PW7TssLy9Rr9Xp5YpytcrKiRXq tQpReAwWyBjDc889x7lz5/jGN77Bl770JU6dPssnP/kpbty6RRrHJK+9RrE8Q5LlfOHnvsjq ySXGacblhy7ihlVmKn0uP/goc80q12741OsRraxIo17h1f0dzly8zMatdR44v8o4HiARzM7O Hiu196PGgXaOyg7EYyVeWMDJPSTxNPUJnIiW2cEYjUgNC9FJQFBwStSZQemcbQVVYkY5kGpK XoVcZHbGQMSO2aAhZilwv77RAYwAICSyhhkIlMnZu9vlxMoSt++sIx2H2cUmGJibbbK1vcvO zg4zMzO0O50jaNFZZwEnvYoODFdv38SVDlEYMr8wz+rJFTw/5OrVa2RZxvKJE3TaPTzXJ5RF RmkfnwAlMlpmixR7KCw4JwhFRGJiNIq+6VIVDaxfwogRQ/AayEyQZC49J6fyLqFbg7bTXmyf XuJO244d3aLJPK5w0UCrXqPqNA5Bwe9J1+B4UF2B6gpu3MG78110sckXLzVJ5ZAHFtZgsMuO nGXeSdCVBVAJS7UQEXcxzRr1cmRbuypnX3uM1BlO+AqYY6C7xz8Bfvd3f/fIa6snTgCwdsoy uy68l3rbJz5x30trJ05Zq55L9s49+Ig1xjtIg3Qak8sAX9pHm+e9j079BwyLtzGWf8tEFzJL kPhkaUqpEOF7PgjBdnoHlSlK5gRSuJMb51MQJTKTsq8cHi62GHtzkHeJGVupJmORl0YYxmZE IKJp1+cAiwLW5bxkKiiRE1GkSAWNIhcZi+cPbFFtq9Pi9R20Upw+tYIBnAnGBZi2/7RWfPjJ JygUAh544ByJF1EY7+OoGK8yj8Ew13yca72cs1WfLMtwPZ+x6pOREhKh0SRmjCJjWazhIEnM mCEDMpPiCetNMBJWqbnoVTHCsK/36Ko5Lk7w4rEZMZ4oOVufx3gypdUThbeIkRniCW/amNBG 0aONb4JjpSuP3Muwhrv2UW52RxgvIpA38UVG1ijyYq/J5yqTmlWGICH0AvTGK5iZ85hJQdxw MhrOPRTG2Iw+cEr/gWNhfvZYLZmDYtjxQ/zJRXx3wfyjhiu96eI/HEYpslwTBB4jM+SOvobj uGgUwnMIggK7ZnN6iikNVa8D3hKpGk/tSDWKgIB5Z5kqDWqiSY8OsbEQYTPR4D+IgihZQoi2 ZBJfBBREaeq6aHQORiO1QGWawWBsv6YVWufWDeaw4rExRKHVOCoGLkmu6fh1TJ6y1x3gCDA6 ZyADHGEIfBff9xiqPsZoEhOzIFY4LS9SFjUCETIwXcZYLkBVNKa1zMgM8GRArEZsxglKllmO 2nSyA5lxH4EVx9VohBFg7KZNSVnvbFL06sQdUEKxvdfG8wvITpWCLNnhnOMgHImRgp39Lo4j GYySqWG2MRoRlnhjlKBRJCZBGcWZaA9l8qnGabs74DuvXkXXTuJd/QvkcBfpiKO8a0cSuYXj 0aC/9mu/xne/+11++7d/m2eeeYaXX3ye169t8veOKYKvXbvG2toa169f5+zZs1OYtJzIm9y8 eZPxsM8oNZw8ucxss8mL3/8+87OzLC/f0wzqdnvcunmDy4888hPdlaPxmMEoIQgi8iwlLyUM dR9X+yRiTCYzSo4kvesyqmSE1ZDcDSkJwWZ7G7eiGfdyStXQOhXCBGQX4OJZuySsUrSYoDzf 3a15P4GpgxjHCa39ziErIxu5yqbaPe+ORd8qycl+wpu3bzNXv4TjSBZ8Y1WYfUVqYlITUxIV SqI6TT1OOhY+URRllFHkZFbShZQxI2bEIrFIGKoO14dViq7mYtmjiEFnCle4BCYiZkROSl3M MGbE2AwJRMSt7dt0dxI2t7ZQ5xzeuXqN67du4bo+W3d38b2Q4XCI1ooojFBa8+JLr1Cv1wkL RdLxkCxX+GHII5dW7YxiwoNoeFaZ7mBQ16hVmJt7zBqGRFUcNKZ1A1dbj2WMQecpFXlMDXDj xg2+9rWvAfCVr3yFZ555xhbBcZdvPPtvuLLRol6uEBYCKmHAq6+/w8pijUJjht/5p/+cpz78 CLgV9u5c4dLjz+AJjRaCm2+8yrXbCzxx6SLffe6vqc/M02q1ObN2Aikd3nj9CpfOrfJWYx45 6uL7Ps8//zwXLlyg2WxyYpKG/SihjebNt9+hVKqyvvEW9aVFnnvrCo+crXPl1auce6bMS/wh lbjGtbs7PLDwGaqVh3jzlVcpnpxj4+ZtVharPP/Nl/jiL3yKVMekxIhAErkegS5QnQy+VG6V DHKV3UdX/GGML8rFkHLxflGxzEkZmj5lasfq5GiV4zmCxx95cKqBM+MZbiWTgRspAufI4gem Q6+O2Z+QWSzLyxcBc8J25hyTsjUMmQ8GvDmcYzW8TdEpMvRGFCmTqBiUfRp4wiczKYUJg6xS qnLq1AkynbG9vUOjXscITbFYIstSslRRLpepzUfsrXcJowLGGOq1Kolx8FRGtV4gKgQsRAVG WZO+7pCbnKHp05D38GTGTFx+jEY3z0I+RtVX77tWqUnu3wBra2t8/vOf59VXX+WXfumXADh1 +iyrq6dp7+1yudigOxhSr5ZZWlxEBhWUiqnWajz5xMOsLCzTT2H24Sc4sTgLCPa27kJU5kSj wiiDJ594Aj8IGCaK7t42XrHC0vwMjifZvnmV5fk5jDGsra1RqVR+pMVve/pMpUQMhr1Wi/mF WbZb63RnLxDPtukt/j7funMTJ/W4/JVf5c6v/h63dn+PV7a+wMrMP+SbV3Oekoadm/ucPXWa kAI+EuG75E5OL90jJ6dI0WLQXd/yY11/KvKkVD71tf2baNx0TZuRGdAQs1O+7+HNdKDhqXMr vnswpHpz5PFgcUTLtHG0y5I8dWSYtW92CQgnebghNmOL/hQR2mj22KbglQlSn8z0WB/PY4Cd tIDxtmjnOzTEPJFbIvTKSGO1UgMiEsaMGVJcdOhkW8yfj9AELDon6JkOYzMEfCJRmEKuFypF hBAsMo/O53hl6PNkddvC2tWIfBwjQx8nlVjLwvv9wbTKkZ4PjmSoe2TmfpFkF+94PsCXv/zl I68dFMGnTp1699tZPX1PK/TxRx+77+txHHP6zGk+9NFj7uiR+NC0MD6IHwaG/X4hRR9EZUKA sdKDxUKR1VMLFBuS/Zf3eNx5mT98bZ2m61AC5l96jMLeLPMvPcbmh57nHfE6r++9wX/30NNs bngMRjGdfptSUMMR0Ml3ybKYqtOwoKxJoXpY0MkLbLG5k28xKxYnQro2lfkgkZgxkSjaNuKB FPqhYZKa0C+N62O0Ymj6jPWQolzBEQ6eCBhmXUQwh8ktJ3rXbOFwr23r4SMYTfRzvCmBqCxq DEUXTxi2M1uwJlpSFCV6Zt9CPpSFQUvft7UMksBEeChKosKu2URODAcFgqqoW6IMGSNG3Hl1 n4uPrjFWfRSK1CTMe5pP1WISEzA0fYRwGKk+ZgTz0QmGWYd8gus5HEJYgo9Ih0R+k1AcpxZt 7pdF+da3vvWBbsr/X+I4WZSxySg7HXJqlhzhODx0+TI7ey1a+RYzD/p8843/m5P+dW7G/wgp fJaetzpHS88/zbWHe+zyUVbD/419+U+4/NAnLPEcQZ7GaMA1LgZjUwej6IgWTeaOfI48jemL Li21RUEUKFLGD4roPP1AOKgZMc/b+hVykbFrNrkoj7InDjafzmPb+jWK/bhAM5gwvSaw5Eyn aJPTp4s7wR2NGOATEBAh6KAnOjzKKAJZoJ3vMjBdInnPRGOsPUZmnzlnmYTYeiPgUMitxqdW OVIzxUbZJ8KISBQsZ5kSDg4hBTSGU6dW8I2PJmJsRswckj1xJrLpWZ7gOBViN2Y8QbceJ4Uu pETnOW42JivOokx8hHIamzE90/7bLYsyUoZQQODskCuFZwaQ1tn32ignptW/Rmd4DSFgNfwy O7f/V9phgblRn3a4wGD777J66p8gBFzf+Y+ca/4UO9k6vvIpTXAuBVFC4NAxLSt8y/GuLkVT Zk1cIBQRWmuyZIQfFKa56nGhjeaqfs1S/sRJpJA0xByb5hYOkrGxJhQH71VGsWfuMKeGRNKj 6M1TRtJ0RhgDRcp4eEjHQ2oHaSzTyxVyOqNwhUudGXbTTVIXyn4NFw+RW7bYzfwod2MzLTLr d5FCInHtojVWdDj3NW5q64yxGTIyg8mpH7BvdlGTqXhIRGxG+JWQrt6nTtN2xzB0zT5V0ZhC 2utek1xbePVGfINT4QWEcu4j9Bil8PUY8pgxKTnpEcGBmBGeG/7tlkXJnIyRCRBmDje0yNR4 fAvlpWQ6Zr93Zfpembl84Wt9/vrBM+w2yuzXinz+373M9/+xh/Yzbne+C5mykAGjGeaComuf OpEosJN5FN0W/jHEdrAnWMzI5vAT+9A8SywU2vGm5nDS87FiEikxIxJiEhNTFnWKusy8s8xA dRmavs3Vca3ynO5RoYZPiBeUyNMxO4lDKNUUNKa1IvRLFkqNZcwZo8lQlA6lCBIXJRQVf4ZY jVG6h4NDN/W5Oyow4w9xHc1Ie6wnFRaCA8Pqo0+zwISoSX7uETAj5lGoqfFdYsZ4WKaXRjM2 Azzhs2e2qYo6KZZLABaq0mTOOtMIa06+b7bZSe7S9BfwtEtiLJk/ECEy6UJ/m3TmAkWTH0Hk Dk0f5WiaYu5vtyxKlTrRxChP6dwiLrMCOtqbyG3fO63nX3oMf1TgwvVNnv3kw3zhL1/BHxWm tUCqx2hH4xiHmpwBffRmPz+o8ouN9x/iBYT3cWWnVj0TbkCe2psoXR+fAiRQoITPPV7AGXnJ KlQYQUZCz3SoM4NwBKGI8M2QxBh8x1CXFg7iSHcyFb/X+akzgxYaeegJAJCT4TsBrTSi4PQt 6hUzmZo7pEhCJ2c9sZtmpFwKMic32aTLZGW+DkPdLEHInRiOW2WGAV3LozAGicQRLrnJLYeA IamJqYg6mcnwDjnCCCEITMCSs4pGExPjYeH2Hj5O0kGOO+Tzl/CkPGK+B2BcaDjzkB0Dhnt3 /Kt/8X8w98CHeOjsKpCyv9NiduUE23fv0ggz/uTlbf7rz34YZTze+t7Xud33YLDFh3/qcxB3 KM3U+d63Xmd1bZ65k6fZeP1bfP3VFr/4c8+QmZBIxGzdvsFrb9+AcpNAKOZOnOP82grkGTfe fIFX7w441Sxx9vwqyinipAOWTp8ndN9/YuBxL1/VWuMAJu9Sdsvsp3sUA5tjOqnH0vNPs9Mo c2Vtgb//1b/iW0+eRxhbC2w/9hL16glKokpmUluMOkf784ueYj93aLjHpzPANF05Lvp5m4SE yERWYiVP8YTLI8FH2U3X2dS3WeFeU0AYC30W0haTWmhCEdm/WVg21IGKgjHa8uImnamDOM6u dGgGjBgQ+iWu96HphdS9ePJz7Pbtq5C+CsEYPKHp5SEFOUAIi2bFWJ0gT/lIz59irwD6dKiJ JlUaE52gFIMGIVHGKuTZeYrtaI0ZHrmPBxGIiMxk+ASM8xFCSkxuUKqLHGyil55AJWNUbmUV pweL5xNkIevZNVactR+8AYrFElvbd2mvr2PYY/PWmELFMBg7BHmf8omz/NPf/j/51f/+f+St mzv8/X/wD/jKl/8Zf/xHz1L3RnSER1W7vH3l+zTXHmMt2CbOXV5+4Tmef32LmSjlsfOnGGUa 1d4lFoLCEvzpH/xzlp/8u8wVi3S2riFEQvH6mP2R5uv/6Tl+9ku/ymc+/P7m2kor3Imxg/UG 1oyjAgvZgHlnlsuzX+D1W1+h+dJl2uECb59e4GPfewcBfPy7V/jmU+d54Jp9Oqz9wqMkie2O JF6Mb0KkkIzMEJ+Ajx2qwffNDjUxc9/iOog8z+4bjqk8YywGeMLjYHZtjEYYSdVt4CoXx0xt YCbEGp9Nc5vaJGcGCwHPD5l6H4RW2cSP+f2L7qIo2UGRI9Amp5NH0w0QiMyiapFUZMy8P+Bu Up2mQJl22MsjzvnSLuIJCtf1gymZ/YCJFYqIElXSwxpEE48zhZVPOVB2yEiP3QR900EKl4Ip MRB9EobU99fxTj5DPO5P0x6Vp7h+iFY5WinGZsDIWB7xD9wA0pWcXj3P7rVXWTx7kZe/80f8 ys/9Iv/Xl7/KP/xHf484g9ZOi+WKz2c//iT/5tmv86GP/RQqz7h19U1Or52hYCRuFJKZkJrX 5L/99MO8+Z1neeLJJ2g6XXK3xGOPncEIaDaavHHtJu2hy5ceP8PNV3ZYXlvj4rkVuhvXcCvz fOzxB1lauL/1dd9nn7QZrSeApD8eIjxFrhYJvAjthsxW/gecq+LI4geObIIz1z7L442fJggK +DpkV28RCzv8ySaI+aqpW1dzUUJipQULoogyOSk2v09IKFI6dgaQm4yGM3ufOJZWGb4bEcjC vZN0IouYTSauB9ZE2mg8xzuiuZNops6PB6awB3FYSOsgMnNgvJHT9FJuxnXWIvtE8WVGwx3R NlV6ecCHKnfYSu3GGymXV/sLLIddFPkEK2WfEnmaWl80Ie0GTWMGpkdixvcNBQ+AeDNiHld4 VrhMSKvOga23tNEM6OFNlLUR9mkfDXdwinOMsj499mlMNFiN1uRpTFAok4z6VESdirSwmx+4 Ab74C79i//HoRSDn1P/yALPNIv/T/7zKbLNKOuyyuPTLAJw8/zAnD+kOPfTww+/5cz/yqfeu NVZPLXH3/HlCBx549CM8cNDte+ihyT9+4FABsI876ViSuxCCYTxG+NbTtugFJLmmcOcTvLGw fmTxH8ThTfDWi0Me/7hVrPOFP110BxKCW+YuGRkrrE0FY8EOmbbMXRbFCTspdaEm7mcmBbIw XfxW7sO9Bxqb1AmHDbTvefrewzoZYyDu44SNKT5zX0kWnQOqIEdqF401CD8wpE5MTNfs48uQ XGW0k5DttESmnXtmfo60VlNCcHNYp5+HtNKIu0kV19EsBz0UIbnJDrG+zFQFzvXtJhDq+Gl4 brKJqMDEY3lyDQ6EdgdKEDiKhLHtTgEjBozzEctpxm69Skk4ZCa1MHU0HaXZToucpEt9Qo09 iPfdANevX7+PrB4Ekt4gJvAEvV6P8Tj+sSI4Dz7Wysp7m8f9sKHzFO1KXD/EGE3kBRbrHtq8 dBQrrt/o8Ol37kDFPm5TNbA2nDK04qs4fOrKTf58NuLsUwtUQolPeOiktgWch0/LbLOJpGCK DBlQosy2uQvGCrZGokBwiCAfmxE7eoNlsUbk3Ht9QA8HSY3G9ATURmPyFM+PpidoSkKNe5xj 6UgYtcC3tcZ+5nA7kVQcTVHaYvOI4wou4aHPk2D1csqyTqJjThYGXE81e2nAYjhGKdhPIqS0 Lsm7qkgkM5r+mJvjOqvRvhXWok4sRsdSHo2xBXlRlxkzQnGUuqiFoS7eJZAgnMk2MrwTezSk Zi6oMNIJqRjjCpeZdocdr0wrB5wOBs2e2eK7vTXG2mOsPYSnqHlHC+L33ABpmv5Q2HzL7OrS aNx/qr3wwvM055Zo72ziF0qcmq/xwpu3qVcK7O23+fQn74dP/7jjoD+cxDGePLpRK6Hk1//x JfR/c4EkGRMGBTyxS2Zm2dNbdEWbke6z5jxAVb9NX9yhaFY4nEcfKMFVRI0tc4eu2WdshowZ 0hF7RJQIRcRQ9XGNpHiIKBOKAg0xR6YSRiKbjuoDAkYMGZoBHdMiokBD2Md5lsZI1yPURVzl TT/J1MVx3EZXl0FlJEZwNswpynu+yI70rGEgti46rFiRk1sr1zG0d4dUmgVq7dv0wyKLjJGu C1JM06h0UpO80l+g4iXMeilFUWXbrBNvCM6cqB4749Aqx7gCj5CCE9DpdJCRIh8J3ALs6A1m xMIU6/T6m1c4c/YsN27cJM5h0xj0jEtrq0ehFlAOHN7cTeitPsiqaFPWRRAwZsh+FoEQuORE GKTn24NOx7hKvjfw8oclpxxwh4+L7b0ttrY2KBYj4lyRGxfUmI3WPs1qiPoJqUEcDke6aJUz HMWEwTFPqomPrsXn2CnqQaQkCASb+jYGw77ZYcQAfYhnXBJV5pwlfALqYtaqlAmmxs4RBVBW 9SEXOYk+WqCWnAq7bHInv0rHtAAoigoV6hRFibkJPXFbr3NNvcGrw2vEyYBARkRyon6WH9LM dK1tajvRdHKH8iEfYqvcYKa2pAehjaJt9iYYII/W7j7PfvUvuPX2FrsvfYd0CM/92esM98eU b73CzPXnqZOgnv9zKoM9kvVd1v/Tt4mcMn/97Zfp3El48fsv89V//yxxmvPmO9d5850bjMYx f/Tsn9Hab/PGa1d47i++T6/X41/+s39N1pX8/pe/RuvukBtvbvHcC68gXdtFypXixo2bXL9x k5VaibzfYdBKicIimzf3uHZ1g6A+g8w6dJSigz2EnuucJJI5Z8I2n6qMOOsldkCXxoxUH+kF 770BgiD4odQalFJTDua748Lp81TKRXr9mHoxZDge4fshF1ZPkBEesS/6SYTsbyMnTvAHxnOH MeEAiY5JdDxRex6BM1EdQJGkIwxmKgEeEOLiT1UfDocj5NT1JSOl4tRpinmW5SqL3onpDKBl dqZ0wYOoyAaJitnNN8gmEGuNIjc5CkVHtGmtjwj7dVq9Ff5qa+Ik73r020Pe+d9fsKJYwqCF w1euxPQySBFTF/jRODmiQeQFhelMwBGSgMie/iZjYHrUqlVaW13CKKLXHlIp1XjnzRtURU7a 3aPsaHydsKzu0Ew2GO3vMY4zhr0hl09fJJAhq6dOsd/ucP36Ta5eu47ShjhJGAyHvPTyayTD HM91OX/hPM25OmfOnmHhVAOhXdrtrqW0ZikPnD/H5Qcv8rmf/gzonKcef4TlxVmW5md48OI5 nji/RGMu5MGqS0+F/Nu9NZ7rnWRfFZj1ujxeHNP0YoaTzs+2WbdDuuwYNOj0hjoOjUbjB/Jz 0zSl2Ty+I3Pm3P22qssrFlC3dt9XfvwxqlSpbr2OaZzB8yRGK+QhC87YjOiaNlJJmsE8OC4i vUtXWgHYsqgx1D0rNoVLQsxV/ToWWQcrztG/whO+lT2hg4vHnDOBESOpiBpjYZXJbN5777oG IkQIh6Huk6gY13UZ0MdhSIkKVafOn37v25w6dZJTM/D1OyPubPo8Vkp58198h4UrLtsnUi59 9jG+/LrLRe8Wd9pDXD/gaqNOe79Nkqasra2xublBpVym3ekwNzfL6ZNLGK0JCElEQGZS6pU6 n/jsR+h0OzQpcscNGauU8vI52n2DKjYY5JqoGBIVPbJhxvLKPHg5c7OzXLt+kwvnz1GrVigU IlxXMtNsgjFUyiUKUcSHnnyMja1tCjJifnaGva09Tqwt0L47JvA9KtUiStu5QOA5qHSMK2Dt 9Bo6zyhEM5N6poREw/5N9usOj0QRgl1eG81yIWqz4IaMTRtfhEQUGJvRBAVqs4H33AAbGxtE UUSS3O/X+u5YX19ndXX1x87n/VHD1R7xzAXYu0mxWEfI5j0nEQF93aWsquzJTUpUrLmdDCiZ BiWhKIkSN7mC9XU/eBpONDHNPpEu0HSO+lStyvPs6A32zBY108T105pkAAAgAElEQVQXgW3D Oi6RU6SXtkmICZyIkRgQUUShmPOWaGXbdPU+RVOmTBWNwhc+jpFcfOAC33vhBR555FGergu+ 11PsFU5Ru/ptAIZ/eoc/OHOZhcEdVk7Ok+QCRzjEcYyUDmEYEgU+oe+xu9diaXGeXqeLs3oS bXKE1tSdGas0V/fYKN2gNN8k1w5vtRe5uKKoyxFX98/YTpCBz338NJCxMDtDygLKpFx84hQV UbfukChc4fG5z3xyen0+/YlnACjVA6prPpGI+PCTFkU8X5+hK9qcdS8zzgYkJiYUEe/ELuuJ 5CPlBJIx0gv5kz/9c3760x+zuCMc/NyKDgSEnA0HXBnmrIVtXKEpigoe3rTd6+Fb7JJR770B siyj9C439/eKMAwZjUb3vf/5734H4QSM+vvML68xVyvw3IsvM7ewQLfT+8kXwcJ2RjrRMjO6 g7PzBmL+IokQ5KSQw/eGdSqh5KQXIRmAGfPmO1dZmp+n3e0TuQsM3S7MHNVALVC8b/EfxJyz xBz35F0cxyE3il2zSeBFSCPpso/EZddscKBh6ouAoexxy7zDvFi26tVYBtP5M6usnlwiCiPa nS6/cr7MH319nZ3Tp7h4dYMXTp7nZ9IhF85GJCfOMBNIlMp559oNZk9WCcsuDBTzczNcOH+W jITivCTJRoR+kVzdg4UIrG9BSoIz2fjdLCR0clxhhWJCmSFQMBECTkw8oXzaQn7MEI2izPFm JxZrqhmZ4dTHWSIZ6T4OkkgW7wHcDJwI1XSeobKYn/n0x62rvMrZzTdYqC5T6w3IK2VqToEH Chl1p4RHcAQyDoJAa2T7bcx7jir54VhLh997HKx30B/Q7e9Rbi4xGuyxubXB0489wNs31v+z FMGxjEncFOlAVppnMHeWeO9NvN4GjpLUnCZD4dJwSlYIy3QxwYMMBkOu3bzN9s4et29uYPpH i2dfhPTbKbeT2+QT1xghBMOxfVq29R4DM7TpjrFPHFd4LDurGKUZ6xGOcKyp3AQXr0zOSA/I RU7DmSUnp4/1Y7ZTX0EYuLhSMNus0U93Wfi972KAf/vZx7h4bZPoj6/QOP84y/sv8+LQ5fWx y7lzZzhRW2JWzlEtQbWc4EmBdMDzHFpmmzSLCcISiYnp5x37NxJijOFK3y5oTyjeGM7R9GMU Dg1vjCd8Fp0TuLho9BGb12iiA/peEYkCnvCIGaFMzhvqJd7QL5KbDJWnKKFx/RCE4HxRczbU U7FiuCdw4EjJjDMPSsGkuBc4PFFUhMI2CYQjcXvrBK0ruL2bmP4G2dxFsplz7z8HOM558LjI suzYWcDC/DzIgGTYYWbxBJHn8tpbb/PJpx5ic7fzEy+CVZ7TzQdEpoLWioyYbrXGUruHLM2h gC/UbF9YIDDCQ+WGB8/NExTmGI/H0xroDm9Ni+HIKXL3jR2ymk8vuE0hDPCDkJ2dXUqlIqlJ aO3c4IHHTpHKxPpnSevnNe+t0EvalEwFhGDHrFv7IePjSEmRipVTJ7EmGc49RxtHOAxNn5CI 9rPrZP2M1gMl5ls9dhtlZr+/wV999dt84sMVPlTJudHXbCZwclJupCbFFZ71IhN2gRth2NUb VJMGBdcKfJnJbMMYw0AFYKCVFejnAXO+hT2sBF18/Om1U+S4h+AKB7MJY3LAOQLCAybFvqCC 1SCqiQYts41BMzR9+lkXcjgZXeBbf/UdoigkikLanR4PX75IkiREYUiqEhxg3GkhZk+jJ5Lr w9GIja0d5pt16uk2g3AGv7ZIJ99nLpxDOBLpvo9TfKPROEJuf78olUrH+ghcevD+SfAnZy1Z ZHn55A/8uT9q5GQk45yqbzdaYmICEzJqloi2XsOfvwQTuXIhHISxwriNikBLQRjU2ExuYBxD gZLlmmINFhzpMB6PuHv3DsViiYcvX2J9fZ16o0Ecx8zPz6HIGJucoihZN3TXxxEOoVMgVzm+ F+CZgKYzx06+TkCIRE6J6bEY01LbFEwJXwRIackrO+MNtr52g28+dZ6L1zaZ3e/zxtkl3ji7 xMPfaiE+2mCcKW5kDo+UtxkZS9hvOwPr52X28Alsjj4pCF0sgaUWzE4N7sAwMhauHBuXOX9g ++pAquWUiugIyQInjuUoK9UnzzsEwakjm8AT/hHikE9IU8zTMts4SGbEAi2zTZaMUBN1jV5/ gDGGb/7VXyMdh1xr5udm2dtr8cjZFb7z599AG0OlXKZRr9MfDCiQ8vytbZRap1Qu4UUO/hMu DWbpJjvHb4DxeEy73aZarf5QrVApJbdv3+bkyZ/8ov4gYTCQOmQiwfMCKro2sepMyefP4XfX QVvglTYDCGeRzj7ICJm9yR/99TafeWKRABeVZbQbi7T1Pj3VYeXpKqv+WUQucTzBzeQdPvn5 pyg7NdI0xZWSDnuAx0D1ptahCAtjyFVGnmc03blpWzQjpexU7YIUHgEhsRnZbohrN3FJVNj/ k7v85YXT08UPcOnqBm+cXeIVU+LR7SKv+i6nSzfJhWSkhiAMAZZKmWOBaQbrtTViQEiES9l2 pBBEokguMs4Uu7w8LHE22md+Anr749YFPMccAagdt/gBpKwgRHDfE+DdYWcuDovi5KR4dpkX yxhjcF2HOEnp9fusnlxhOBxYSLQX8NjDl/mPf/GXGK1I0pS52VlOn17j2995jofPnST3CmRZ Sr1RRyvNR554ypqZ5JlFyB73YUaj0QdyhhFCoNQ9vZr19dvsd0fEow7CDRl29v6LFMFlU0U6 Q4KgYLU/peTGrTusLC+CK0nrq3h+SJ6nmLhlL0eeobMxsnSWL3zhUcveUjljJQhar3LGcdip zJI5Pl21x4xcIFYjsiEMqh0qpoLvygklMSMzKVorat4MBs3YxDb/nej+j7IMrQ2BE+EKD2Gc I5BliYvreFP58Xyc8f+smyOL/yAONsH/+/2Yp87kzIgqvgrY1HeQwqXqNNhlE0/4OGYiBmzG aBTRRM1OZamVss9TQlHkZNjiehxzN6kwHwwwRvOZ+lVmnNIUgfp+IYREysJ7fn1o+hRFGVd4 GDQ93Zl6kSUkBAQ8/shDVhhYekjpcGJliTTNiMIQpTI+8bFnMErxCw/vkLoRntvno888zfx8 hSvtq/ydn/0CvV6XQhThGAuSzIWVdD92A/xNJAoPT4OXl0+ys/sSnidJ4+69Ijh2efqxB/gP 336dB1dnUcb8ROsAlYP0nSlw7K13rlGt1nnh+6+zuDTP9tYuzUad1n6bQiHi4csXbVdAQJZn 6MxOgm+MXPaNYa7ZYChd5gcaozLyiu0ChaJANsiJqxPFNhTKKIsWNSmEEqRkGHfp6w5z3rJd hI5EaMMLo4iPVT3OOw9POboHcVA79I2VAHnlVsDHGVM9W4GJ2cOB6wzAMyhujlukmwXGK0tE rmbWWSQQIZnJqDNRlJgA1TKRUqJ65ARXeYbnRzi5pCQaXC6PkGTMessII8hFhsh+PA2MrtnH 1gI1xgyZl8skxlq1xmaELyyg0Z4KCrTB9yMKhSJGK8s7FuCXylCucXfWY4EZZAy+6nCu5OJm b1IPcjAOrlxCmwjPc3GVOH4DBEFg/X/fY8J7XByuFba21onjlEatTLEyw2B/579IEdwfjfCK Nr0wGJr1Kjt7bYQQNBbL7LfaJIn9O/3Q453+6yz5i2RORlXUyTLrGD8TCGacDpIqgQnJSxK/ cwujU/TEiPryykU6tHCkR2ISdsU2TWeOGWZoZ7v0xy38sIAZtdlRG9SdGWvVIyU+aqJO7RxB 66uJYhzSthpdkfOJCwXEA08ihMPNOxucOrHM+uY2y4uzGAyvvvMWHzvdpLrX4Y5yaHqG0Cny zrWbnD198l7aYg68wAoTg+zDmGlDltiCP8RnzY0JZQWTWzaX7wQIec8b4CAcKSdWRWZqTPeD Ysm5pzQSTnzVAhHhmcBqF70rdRrGmjjTVKIc348msA7DcBSjki6nzSpa9XGdAsgKgb+MkB46 TxGOJFUZiRpzNRY0vWNM8sAWtcaYH1ql2RhzRNZwYWGZhYVDok5r9yam/zmLYO3ekx7J84xi wePShVViRgzpcerBJjOk3CWjLzqMdcIGKXU1Q8zYFp3aEJIgKdFih4KwphHV5mn8zVfJlx6x kuRA0yyiVYZCMcj2qToVchESmhDjaEQmqUfzxHrMKO2zJe9wWl7kqUpOrsyED7tFR+8x4yxS pjb1EfNFgNZWrdr3QhDw8iuvAoLb67e5fvMG0pUkeYJINaO1S4xuvcNf7u3SaFQZDRNeSxLy XJFlGR/50FNWatFohqqHNHJqcv3uiM2IXtZm1rGmhkYrHM+fHHoTzKcQjPWA9v9H3pv9SJae Z36/bzlL7JEZuS+1L11dvZPNTSQlUqRmA2ZGgAHJGGBkD+ba4z/Bl74x/A/YgO07jyFDgmFp JNIaY0gOlyab7LWqq7r2qtwz9u2c8y2+OJGRmZVZ1S1Za/EFEqiKzIg4ceJ7v+9dnvd5sl0K ukxNzeS6Z44pHOMvY0pqEOI4FSQQhxCoPLRyNkMISRgX+eDdd8AEfHF9GecNqBJPkhFLYZ7j CSFwNmNk+2zYLk9MFSWqp/cBHj58iJSSJEk+10+aptPE+e+T1YozfPjuAz69/5gnm7tIVWCv 2SXpCfpbnr0n+4xcjc0n+wxuKQqDBq0nI5rjLg93n5CaUa6oIjMyk+Kcy9kfkCRmiF++jt7+ CLHxPjQf4s2EJt0XeUm9Ma2DByJkKAc8sLd4lH7KjntMsVCn4uukLjkGG7beMmbElnuMkurY Dngwlwt52BMEAVEUkGYZUZyPEQaErMSen37vPwCeV16+TL8/4OatWwRByL1793KlSpNiTUpm xmzbR8+9jyHR1Mmn15mlk58EkyXYLMHajICAgpnwvirNvn1+FbF3ylyACDQdmZ/UuXBhzhkq lUYKCDSTsCif+XDO8bU3XuLLlxcQUqKDiDnt+PNukYGIJpoQDmcThDNc0Et8t1LkauxPPwGe he58nh10g2dmZqZJsBaG3mDMqN/+O0mCQxHQ7/XZD0Kc8zze2GFpcZ5qpUq/MyQKJN/7/s+4 dv0qraRD1hLMl1e58+4DFtfmiVQutJbInCo8swlt9lkQK5RljcwLWLzGntsmTXZZ2N/LaU/m LoHNYNBEjFoQV6lXV+iwz5gh3nuao01WixeRLp/tlT7/QkuiwqJ8G8hDjIFTOfeN8tNegFR5 c+fVV15maWEOZy+zu98kKkTUQ0/hzMtU7u1z7cpFfvrOu6ytrXH+3AWGwyGvvnKdbq/HAaRD Cc059Qy274k5LDvuCV64Kb7pwB5t7dFut5lrNCiXihR0nWGakQUjhNQ8aHtC3adWLTOW/RO6 CT/rR7xSSFkM3UTkT5FlI4q+hBMGZ81EQtbj3aQ5dpAjCZGr22c93Mb7IINcQ8B7wkKJ/3rV Y5MUa/NTy7kU/dSef6oD/GW6wKc95yAJrtbKhMUCnaj4d5IESylYX12l0Zih0+0xNzdHIQoo FPIkSAYdCsXX+OnP3uHNb1zDWMv23iYX3lhFSYmTjo5pUXY1QhWTZmNqYmaKKfHOYZUnsiEb skcwewaJZ37nE4SO8cVZfG0Fhi3C7Y9Za6xxj4yCKLKk1slGI5QK0DqYKj0eLJAn7j7SS0yy xC1T4bdryaFKo1TYLGFteQG8Y2VpnpWlebq+xWxzm5/tj3nrK19FCsFX3n4LHYSYLIUjsISn eXQyn+Zs1xMNrqMWU2JOLJ36u0GvB0Ly3vsfcvnyJfb29hkO+0RhjBAwv7DI/XabKNLMXAmn Atb5BxGEOmSu4AlDTZaMcVmCRB47+dwRva+D4fbD71jht26Qrn0R3d1EjVrYeCZ3FqlRcQlG LWRvG530QSiQGlQAz6oC/VVUG40x00T4IAluyx6VSgOR7v2dJMHCO165lrMeLy8cRaw65mYK GNOmsjLLv/gX3+Gj5OcorSjOQp9NAEZun1k1z8gOWFLrKKUYmC5FXZqWKjOTUNI1LprrZCRs uUeks7PUxGxeSzcjdFTBLV6nsP0hS/NLFKijpJqKczhr80ZZEOOtYej708H6xdDxweizezHO W4ywaB2zXqsQ8ATtxhCs4MgTxff2DM3U8/XlXMQiFBHJeMy9H33AzLdXUGj6pkTkLX94L+EP ruShjDoC9X7a6sslhFWUiwWCIGR1ZZk41JOd2jIepxTqCuklxTDIZ+odKB3Q9R1+o2SRVpIZ eyLe71lB6sWU3eI0k53H2PlL+QlRW0G2HqAFsLeDmyh++tIcavY8TojJ6SHAO7zLTneARqPx l5YpEkJMwXAnk+DDTP9vMwl+2pxLsbaLUlV0UOD7/+9dvvvt1cmc7Emnr4gaVVmn5fdo2T3q qpHrz06mr6y3dF2TipqlKEqMfS6/2vEt5sUyYz9i3++wKnIy2v2FZeqb93Arc3ld+0ipWXiJ MSnC55NZBUosilWEEHyrlvBZ49sD+nl502SslAP+h//xj/ln//bfcVEM0aEkM7AaaR52M/5k o83vrBSBiJ0/vcfeHz2g+rV5jG7wF82I/n6Tf335+X2gkR8gkIQVyZxeQszljpxPnWlsluSl 2UpxOmzjMhBaYLSjbbbBe0qiiFSau+kNjMu4pF6evsfP+hHLgX2OAwhU0sPMnCFwGbK/hd/8 AHvua5i5K8f+0poMHcZYm05Pvx2/dTIJfvToUd4g+ZwJ8MGP957NzU2y7HRqwL8PJoRGyphA DhF2h9/8R1+l6XaQSrOgc4cNbIjJMqwxtN0+kShQ07OkMkGIHNmpdYDxGV1aLEfnpgwDsShy QV2jm6zz0D0hFgVmxRwtv8e+36HCDNniNYKdG4Dgg5t3uH3/McNshHGewTBhZBPSzLIwusDj R7s83NgnCtRnnsp936UWNBBhESk1/+Xv/R4DYydVJE+g8+rJV+cDQlPnp5shdmx4/Mc3cV1D 7z/s0k+LPNzu8K8vx5SC009n6w1936VHB4elphu4LMNm6STONvzJn33/mEKlnWipxRQYmC42 S/lJe4V7o7yqhBTUmaUxGfu03tD2+3y10qeo+yeuIXWwnSn0cA/f3ULt3MS3NzBRHbf6Bj44 3XnNpK+jw/z3FWont5VcK/evFpqEYch4PGZnZ5NmZ8jiTJG7j3cw4w5Xrr1JpRDwi/c+YKFR JbWaV14+OTDzN2lCSJQqo8QGY7eENQlz4QreWuZYokyVQIb0gx7Gp9MqzsaoxkqcN5IOSoVB WED6Yf7FK00Yl9jOHlFXc4y6y8TBHChLRIFcLXiimigL2NoqQfs+7XaHSrnM3QdjzNixu7c3 Ucn0PHz4IUJKzqyvT+RRn11LTH2CEopYF8Fm7HTazLgm84UqQgY4a8ksZBakTvnaasYvd0L+ 8I/us9TJ+yQbf7rNzasD/ttrz178wISiZESRvBOsfDilPwTAe/7Jd781ZbyDXMjaYlFCUSCn b2mEHcIDLiNEzhc0eVslNGVfpcM+XrWBwyRdSolsPWDJjhH7N/Cv/V6uUTx5P1FbQw8/xqpr nDjVvcd5i888UmkK9hSFmL/q4j/63IMk+Ec/+RAdBiw25tjZ22bhpWtUSzFRVOTJ/Qe4a1eR f8N5wFGTKkAqic9CJJKeaTEYd4jDEmEYs/Ogh3MCLQICXSRYqNEdj+jYEo8GAReKm6zGawhg K72LQjH2fQq+RCgKbKb3GYg23557GZPm8awUeRPrmBUbSJvwyjlNB0G336NWrRKGmkq9hPCS xTMNolLITFzJj2x1JFwSEqnDqULK0I+IKJE07xJUV3k8jnhLGhLyJNFmKb0R6DChH2xQoMQ3 ZiP+l9v7NC+tcOHhDj+4coY/uPeY0suXn3n/lBDQ22a+snikECPQvU3EuIuMipD0MbV1CMtP PTfXN26xR5EKkoDrhWdHC1oEVKhjxAROnvaQ3S28EJQWrmCCElKqvGN/JEn2zuHiZTR7GE6f VDzQY5NKn3SAv0oCfGDWWpRS0yT4d3/3v+DJ4/tsb+9SimO2trcYDMcE0ZhSpfa3u/h1gHcW k2YcbHChiBjIHplJUZnGJ47Meu49fsD8/DyPHj9mOByxvrbKF69cRIgLtNNdQiKKlBj5AZ6c xUFZxcXwFUamx/f34Dtz8ZTA6phNiG9tYY55t8NSNsQHAs8AtzDH/ahFTTUY1h1j2SR29RPM CtZ6ukNDJXIMfZ+W30ciqA66dGpXmTN9/qJZ5Is8IXQDnJTomWVMa8iCXyJeqPDw//qIy+/e 4xfXz/LH33mTf/n9X7L7oeL8b59HxceXhTJjdOcRFkm/GFDa/gBRXYOkj8pG2OoKtr5OZg0g CDoPkUmXbqU2xRgBtGlivEELzW5ageJJBrujFoqI1VEBNbyNDcuYhWuoIMA4ix33EFk+T3HU cimoGgHbaNHD+NPF95zJTjpAs9lkf3+fXq936pM+y4bDIaNRjq+fa8xy+/ZtACrVOiYz9LIe c3N5nDdTDaa//+uwZrN54jGpApRWOYrEmmnyI4QAD97lyuvG5tTZS4t1CsUSs/UavV6Ps2dz BXeBn1KJHEw8CS8Y0EMiiUSBPbdFSdW5m23QMcu0RxljsYlC56OGR+z2WHM2NFBawJCXPBM5 Jtpr0bzR4dJ5Qeg0nahCPSznMatUOJt3bm/c/IRmu8e1qxcpVQqURJWKqhOVmjx68pjGwgJv yA3+193X+VdXY25t/M/86p3/k+L//Qq1wiylbz1G//svM4wjnizOcPnBNnfOLPDypxvs/OGP Wf/nl/LyrdSI9mOUy3Arr4H3jJMnUJinPBpBdRkTFPPZXHs4MprV1lHjDsXdu6QLVwh8lPMY +YSKqGEwvFLq0XIdqqKOOoX2UHmL2vsUV5wlmbsC3qODXBDQZnkHWAp5bJIN4If9iG9XxzT0 IoHfQQuJ8Sc5Wa039E33uAP8Q2WGhtOv3dksVw/0dkqyOmZI1RgGdsgwTZCBR3iJ0BIdBGQm Y3lhltnFXFg7Iqbvu+y4DRbkyqRTO0RkEUqpnGWYnHsfoGNqjBA8ShTzcd5EetqWA8sPejFf r4yJZK78MrYjKnM13ly8TGItsR1RGnVg3IVRC0xKYBNcaR6pFMPhkDAM+ZM//x6xCoiUZq5a YJQabv5qhBaet858yr/73s+5UP6fKPYk5z/KKywbdouai/j+117mOz/6iGKSTecJwu83WfmX ZdT+PTAp1JZJwgpbo1sUKTMXrWCtwRRyHM5Roq2jZuMaMrpOcesGdvFlihPpqICIbf+YnmzT 8hnzYoUVdw4hBKrzBJkOEDrAebBL1xFSEU7knmyaV5Z0WIDd29j5PFwb+fy71SKgoRzlCRVM xgJh5xEqctjo+ElwQNN+zAGuX7/+l1p0f9/tsbtHaDVllYOqLIYSVba2brHR3OfB/Ud87Te+ zHjYZ6e1S6A7JEnKwnyDXq+P1poojmn3WiAdcr7CyIzo9LuMOimz8xUak8bowPeQPmAu2sI6 zYP0AiIYU5ApsS8e08EtK88Xigm/7IdUAs98VGVRrJG5BONSMpMghKQ4e/Z440cIwlGTGdem fqbGB+++w1IxZpAklOoLvPnFN/jRD39EbabB2XrAH23+91wo3+He6N/yrZ/eR9r86659+LVj ix8OodS/mpth9XuPWf/d3FnEpGYukDw0n+bQZRWhgnxAxzlzoqkGebl9Y6/F6vKr6O2PkeUF VGmOwXBMvTxPN20TJzWK1RqDdpv66Am+vo5Yusp+uklVziB9rrJ5wOJxYCYdEdkEExSwWY7s yhlZA75dO7xf1hu2KwVm9x4gZs7j9eFJEIqIkAj1+7//+/8dwEsv/e1WZP6m7ObNm9N/l1YV xibEPqaq8w6uFJL+oEd/4EnTBGc97WaXcrGIVgrvYTgak6YJDx4+4vVXr7O1u83dWw8YZkO8 lQz6feZmG6QmIy13iWWBxw9adHdHlKsldDul1Nul3qhQ97PEPp85Ng7+n/stkqjKvpVsZJq2 kbxVLJCScN/dQhlFpAoEKj/uZaDZsREDJykrjyjU8WGZ/X7K9Vdf4/3bt3jra2+ytrCK1prG 3BylmVlCc4sf9/83pMiYHz3gUfO/YXW7RRroE4v/wOabPXZnK9zvWubPSrb3m/zy/Q9pzM3j B4q0KQh1gcdPNkFAp9tlr9lGKUn41EjsnfuPGI4SOv0xXVFhPBrwZGOHO/cekO21CYY1BnuO 4ijjvU/u4Wur7PXGbGxuMbJ9qkEx789MctL79hZ1eZjU6lELV5ojc2leYj2lSz1kgMeRlutU 9p9gS/Mn/uYvL1X4D8jqNOiIHYQRuPBQtX1l5QIri10sL2GdyzkZJuCqLMtIgiGjdMwbb7yM FLBwqcLK9VcZjxPq2TKtVovzZ1fBw65/jCElqFvirMr9jx7Q2emztDKP3azw7r0bxHGEc55i sUCkR8wGZZaCgCVtuZ0E9Kygoqq8ot5mV24yEiNCYh67e3TGTdblRWrBLGFUyqm+45iL58+A 8Hz7t7+ORhKKEO8dcRxxX1fx2x9P88MzP3mV1z66xX/60lXGUcB3fnhy8R/YwUnwJ+81+cql iNFozJPNLSCvPt28dZcwDEiyvMsqpWA4HHHt8nmkUhPQnGCuMct7H3zMxYsX2dvbIzMZlXKF Wr3OMEkpWUEpDNnqW8KowN7+Ps45NjY2uf7yS6jZ40szEjEjn+uLAYi4As4QiICA48634zaQ qCmVzZxcxrF96ud9oR2gquuYbIy12fFSohdoMcRTRaojMqPeEWiJEBFmLAhihfeO+ajBPXcT G1pqUZmL1VUgl18tU82lPiPHTHGGdqvL4uVFSsUiIFhbXaFWrWCsY3d/l5VGiZrOGPmMRqhJ 3QToRl4yrdOgY5sMZI81eZ61CYWYkArrTK4uGcRoJXAmoUTpsEo0afVfsxt8EOSJZditsPD+ a6QKvBDESYacVKc2vvpjZpfO8ur8Pz923y4BDxfrnF0rcbLkBkoAACAASURBVGZ1OR+jNIZi ocBopk6n22WmXmNoB/ljbkhPdYlsROADhFSU50p88xtfQwhYW13Ce5Air7/T3QIVYIIyA7qE 2Vla3QHJeMTr119Ca3kIeJuaOETNCoETGpIBBMenzfpWUJE1Or5FSVSoiBpSBBNdg5P2QjvA iCFeerazJ4RZgYo6AIOJKSTkqMmJQENEgY8f3GOh0cAal+tuEWEZngBMxL4IeKqFGQphiVev Xjr85RR7AiM/pDq3RM+3KYgi+34HgWAlFjDZwbz3RCKmTIXIHz/SBQIzkfpRbkQrEZSCnCZF Aj3RQflJvqM1C2m+MFZ+8hVSFfODt6/wWz+9iQd+8PYVvvHOLdQ4pvbbdVZWT9b+V048klul VGChkVfC2j5j7PsEwCDrIKkTiLzc3E/2GfoBBVFkRswhAOMNzjhMv088fxbhDWM/oBSUWFma O6Z/8LRFxNMwRymNHzbxCy8dqT7l9tEoIBQzvFaMpyweOId8hgP8/aJy+2s2a23eGDF2ylmT +oTM5UmVOGXsM2/med587dq0u5gyzgfFKTEnF9lzW7kwA7nTFEUF5fUxXL9UAd/7ix9OcfQJ I7bdE5ZkrrksEFhr6NKePudgwioShWP4+77vTv+977YxPqOiPNJlOJOSmRGfth2RCXDOYKVm +dofsO7epnrzC/zg7St8851bRKkhTs1U86B28wtclt85ed+8nfIdHbVWp88vP7hx+BnJh2im ot0Ier5D5jNKVAlFdIx6akCPx3zK9u4+o9EYqRRFSqfSqAsh2d5v8+n9x2zttqjrBQajlO5g nOsLFGrst7oIqXP6dJUP0JSVp6xy3bMDVUjnLD4soezJitULfQIkYoR1lqqs51NU5GqECSNC OYdymxiOs7sddLP33Q6BCIgp4vFcUnmFLPEjdv0msShSpjr9+9SMCMnVS6SQOGv4x9/91rRM KDmkEQGoUCfxw2PqjEcd8mBRZD7lnrvJS7xFgGbf72Awx9CZEsW5uDRRg8zVWMSozas3/g3/ +1vF6eI/sEMnuMbqn7Vp/FfHBdAzkonE3fHlMVuv0ph9Zdp5PeDwmRNL9OmQMCLx43yuGT/V +c1JfjM23UPO7acUr30BiwQhqYY5XeUJmVPv2N9v8/DRI86cOcMHH31MGEbEUcg4SalWK+zv 3SYuFJBS0h90eeM3rjCv51kI8vuojwjrmcYFgo33cEuvTk9xIZ4xE/yimMNhspRaYWbKqhAS 5UMrHoQHqfWxVvqBtfwuqU9YlxdJSUj8mMynNMQC19SbWG+x3qBEfgs7tAjTAkrlKi5SqmM1 8qqoU1aHpdBABHCkcpGLV2TIIJqeQvnfhbyqvoQSOeZmXV480V0WUtEIQ/yoTdh+hPeOVlrk /+iV+eY7N48t/gM7cIJ//7VrrHdSarXDZlTHt5gTJwVKvHf4I7O+3juKlLEYAkLqopFzMTGi 41sEhGRe0mULgaBGmUqyTzo5FZzJcrHxMD6GHTqwYiHi7S++RavVYn1tjVKpRLPZZH19nV6n TenMOlYaKqUq1qUk0nJrIMj6Ma8WMlbjwx6Mdw6zeJ1g8z3c6pt4lecFL7QDaK8JqdBtOnzW JxknFAsR1WqFre1diqUKGxs3uXblIlvbe4ySlOXFebRWBP0Ka7UrJP2MrmrilGE8TEgrGctq lTEj2n6f1I05Ky/nqEhvcaKI9MeP2qHvk5Ex9Dkx1YECytO4Kz1hr8glXN3UaWHC7R+EVCbC cbnlOYbSGjY+ABWSzV3Ge89/utHnW+k9lt9eflrRNX+9iW7C74oB72wmfOeIA1SOnEpJZvj0 7kNmZurMzc4gpaDb69MbjBiPxlw4t0agFXjBcJww6A/QMwY9IaPdTiXlsIBAMre1h1062Wt6 esjlwM6t52jRRu2wfr++nN+7OOrSqjbY9o/RDNGTE/N6+QkjM4/1J6lYnJBkK2+gd2/lWmWz F15sBzADiXSe/W6LcWK5ffs21669xDvvvsfCwgJLQUiSGm7evoMQileuXeaDG7fZ329SLpfY uHODbrfLufNnabcGeG0x0ZDlK/no4tHmVoEizlueJLCuj9/Wge/hhDuhJH809j3KryqlyvmB JiaVxhozhWM8bcKMcDPncEJNE8jKaoNr/+YSK8tnSbOTsa8QckIum50IP47y/SilSNKUuw/u Y53j44/zPsv62ipbOzv0R10e3n/CuQtn8AbmZmsszzamYh8PxwFfCesEJgGlscGzpWI/j/UG Y/abbS7GCd9rN/itapFUbBGJmIHPCbMawZDqMwb8vfdkjUtYa2k/vPNiO8BsXKOdbXF+9QzF Yokoimn1mlx/8yr1uEyz1ePiuWVGY4tSktt3HhCFAWfPrFEpl9lvNqlVK0RBwMryEnExwqaG Xi9FKZNza3pPoDUISJIUK6EjM5QQGGMJA42mxNDlyjJCGYZyjDMeJSXaC4QAYy1KCLTOk7mj p4OUCpMl7BtPV9xiSa5PReMAMhQIcEdCsqETLAUGnsHvdEAuq3SI8+ZUKSOALDMU4pjafIlR MmJ1dYVCocDicoPqfJHdzRZXX77EwvoMj25vU6wUpsxyAK+XU6TQqP2PyJZf+yyV1s+0SjUf GfWjLk0juTEKOVe0WOw0GU9JT1T4nrYgDLm/P3qxHSBzCbEq0qjU+HSk2Zw5Q1o/y9XKFoHJ j1iRPcZWlwHBQuM4m/Fs7dm7lSdvte/7bQpijkBEFOKQKvCTbswXyxlFkX/bkQ+o+HIeIpHz 2vTooYQBl/OOutQTyACZOQauTzp2rMzOIaWYOBpstMashCvYQNL3Y4SALLOEoWbsh/RML5dN 1Yp5IcE7rIPhOCVJM/RkZFUIQWYMYaDxPkFITZomRKHGe8jMRLBa5yObK0uLjHSPkAKhD7HO MzIDgliyuDaDw5FlCevnF7CZZTQwSBUxFCmf9j2XVI9xME/WH6GVyuexpTgRAn4e0xIqpRg1 lsTC8/Eo5Ew0j9P5gI4UitSPGfr+c5nrnLXs7O292A7gvKMY52HKrlE0jaShHBVRR+gOym0g pAH6/PyDx5w7s87Mcxb9UROAFnqqHHOgCeacxYhowmUvDv8YAUi897zXM6xVQ7TMHUIBUnpK Mp6EPxmZkAgpprH63f0x5UDRqJ1s+QOUiGgwy72HTyiVikRSs+dr7N6+y8rCLDPVEq3ugJlq iXZvyEz1yOcUgmr5aCJ6HJ058AmDTkpzmAt59/sDtNacWV+jP+xTKVUwiUEpSaN6fNG9YffY GnuaxTNciRK6pkMrG1H3c6RZhpS5k8mJUwZaTxXprbVEYYDznsxYBBCEWT7YkoX8ZrnDfiZQ iccNI1whQQbQNzGLwen36aj9s9/59ovtAAeAJ4ArhQwzVHy9muV88W6Elet5O9/3+NIb6wif 4EwHp1fwXmC9Zej7RMTHxKSP2gyNadgBYKwjVJq+TSmrk+f9yBhKAhZ0ibETjBnlLXvBlPOn KMr0JwrqQiqcNcwXoFJ8vhytEIIHDx9z/fp1eg9ucRtHHBe4c/8RSZpSKBTYb0a0Wm3efvNI MuoP+YaeZffvPKAUV5lrzHL33n2uXL7E1vZuDs/+5DZKKd549eVjkYcQAu1SNuJzCJeHfIUg okyZQAQUC0/f088/h67VkGo1ZNl5QJN5xUavi8kk97o1lmt5KddYCx50kPO1pmmWy8mKX4My qFIa6wxKaeZDyze5hxYFvHVYUcXZDKVDsizGG4eURVSgENkWUoBWEmt7DGWdmj/dAY4ufoBI Kc5Ji4dpT+DAvPf8rCN4cyYkwBOIgMjHNP1uroCOnY5OGuvIMktqhgyHYwIdTBbp84NoHWiM NZTmljDtXZYW5rl1+1OGoxHFYonhcIjWT5FVCTHNAQ7g3kcT/DgKefvt19EuZHd3j+9++zdR E1hJvz9gefG1nB2wVj2WS6juBi4sc1VnjFzuGkdzl/8/5uMaYtTBhaVcnEMEWOuIC+ALMeVn vE0hDmn6HTQBVTHzYjvAQT1d0QQzxqoZMl89liAdLNLMG9JsjDIaqObMayIkUrMUzD28ivBo PNFzp+aklKxqizMe6/yx97LWsO+L1AOLP1CtRFAV9TxeFZL3PrzJ8soyNstIsoxqIWU0EnTS Lp1uQGN2BryjEIcnrkMFAd/8jS8jpWI8Drl2bg43bLL4G1/Kp9N8zn4hEMd4PZ0zKJ2fLpbs RJ9BSUE1LOOc4+x6DpLIZwEySoWjSvWHi19IiRx3SCvLKD+iLAE+P+P4gWU+Pf30jSqYtE0W hrnYB7mIu9KwGvYQnD4J1vVtjM9ynTbiFxsKAaBlBnhSsUDida62MrGDZpXzDqkU/aBHGMSE QTxllHZOYtV5rHdkroV2T1Di2aN8xmbTTVo9Jcn6YAzLBXms7BiIcJqsjbMEHWq2t3e4d/8B nW6f929u0e0NufXpXcZJys9/+T6f3n90GlwG7zzOZJh0zDjLsN0tOoMUa/MQJ5MZAznASMNI j0FLlA4nPJ8BVnuioEQtaEyhGJvukDZxSuMiBH/6vf84dZrTTLUe0JvN9Y07vkXb79HznWf+ /bNsSJ9dt0nij99zn/YJgiqROHQqn+XXt144fUgHcnrJXJ4pJHUveCNMSkkoOoxZYsc8oSjL SCvRKsyTL6nwWZILUEiJlqd/oZlz7PtOTtUtllBuFyUt9pRRu9Msnx32pD6mekpecGBxEKJD STEusra8SKfXZ31lhkp1gVKpwGAw4OVrV9nb3eXpUEjp4FjneZBavE/ZbqU0wj6VUoz0nuKk +6y9BOGmjA6WjFa2TUSBiqwjpUZIQcXPgs95Lbx3OXmV9/zOt7/+zGkwKSRkfZqTof2SKNHz 7SNKm5/fCpRACFp+jyWxlr++GaOG+2QLy8fuQ13PIDHPrf5UqNJkF+ctqS6/2A6gRAerVtFe sKTW8zq8PNzJhJTTbqt1lip1OIXLVSDISNl321hhmZNLBH4P/AArF4+hFwXikDXOZ/TpYHyG FgGxiGg5h3PudP0F77l4Ju8yl0WZmVqZQOxhiKgU54F5PIJGrXQyDDtSUkwchNIj+i0uXH5j CvWQR9QSTwsrpvAHP5mBtlCmhJDgsTmTQpCTXp16BB3c9+YdXOMyFYYM6OWz00JhPqcDHDDm pW7Mrt+kIEo0s1nCoMesrKD3bmOWX51ew68GAa+X8grWZ4l2SKGouCU64yEbTx682CHQn3bX 8BPSWSllzhU5IWzSYYxJx/ksqtJoFWCdOTW+z0iZEXOsyLPMyaXJY3Mgq6inj3VxBLeOx4hc 7T3xY5pWsW30qfXvxI8Z+xFaBMcIZH/2/i7N9iE5lMCfuEbjxLGw6lGqcROs/Gk4p9NMiGfX 5b1zOarW5hQkKni2boQUgLOkiInMqkR4MYF3WEZ+QNe3n/l8gBu3PuWdX33IznaXSrrIJ7/Y oNAe8smDDhu7e+yJGW7cvs+n9x5hrOPOOKCVyRMM1kctOdLni6QglDF2PHqxHeC3C/dIst0T jysdnEKymotEPC36APmGHhLl5E1HzPoY6XvTaTLITxXv8gXfcns4f6Aa46hrR+pPX2gpCW2/ z5Z9DDClVfzCm8vM1k9P6FIDnSFkPjy20APhueS2MY2L08eM/+th7Huav3NqQqC7G/nu3LjI mOGU4jH/da5K0/b7p8Kfj9pB97nd7bG73WJ2dgY7Sqh5y3CYcnOjg0PkMJaNFuuRoaSHpM9g Jbw5CPh4dOi0KggIvCGMnqMS+SKYkYpU+5PV5ckCPIq/OVBzNzbNm1FHFulprMiH77GKsluA wMoFlNQ4a/PkzE+AbTjqooEIQtLk9C/feYuxKQKJlZYh/VxeybpnwhRSK7GnRCJbmeKKtiRH ToqMjK5vMytOzsUKmTv+5+GEElLh7XEnUGkf1XmErZ8lreZVogIler5Dnw4FUUKhGflBHgo+ TRT2lJ07u061UmJnt0mSZkhtqQY1oiig125TX6pRqC9MBfTCYMSu36cUzp76en0vWAoPr1kg KBVCrl85/2I7QFHPU3l6tz3y/6Nf+IEWr9bhc3EkicsX2NnITl4DjFik5QLm0/chvoCZuFxZ VOm4JoEMaNldlAjpuyKZFwTi8L1TUjKZEbgYI1IsBo8nFgWUCHCIU2Pu0ugJ1biE0QvHcuKa Ajc6zqQQTxzyNMsxNJ+tCWG94Ym5w1J4htDlBYOgtwXeki68fOwapZBUqDGgh53IsUYipipm nvXyU6uUCnjnmD8CTZFKI4RkdvgIv3gtvycCnMlxTPMsMyJjM9N8PNR8o5oSTVKemRDWI4/3 ItddPnJavtAO8LQJKXHWYk+Ji6WQE3z/Z8h5esEn42DqAAAPRoo7qeJbtUtEzY9Q1TWET6gI RVHNABWSiUbqkjaESuQly0ky/Omtx8TlAqGO6KUD9s1dZmfrJK2Eu50eZ9agWIhxQKvVYqZe wyD5MFjky727lAfb2OoKJiihB7tcHnVxM8crVAI5HSh/2nLotWav1aLZbHH+3BmCIGB3r0kc h5SLk1FEoTkjLtLvZUQlhbQJZAOy2YunO6iogBcYsmONtb+K/eJXH3L+3FkWbEp2ZHZAKo2U GuVhOHasFQQzEcRS4Z1DCLhccIBECoHSIel4MH3+r5UD+Ing8mkb/GcBs0Z+gMUSiipfKB2W /5xz7DvN66UU7TzelECWcZNkWdkm0CX1NX7Wj7hePJ5oO+dYXlrk9p171Ot1hMvhGw8/2aFY LFIqxey3O+y32iRpzsDcbHdph5LauS73xVtcrEVE+3cIu5vgHR+WX+ctee9z3xcpFd5ZFubn 2d5rcu/RJlprmvt7VCpVWu0OM/X6hBZeMhwO+NL1i7B9k2zldXAO5x19ulTFcUBhTAH1OeRU n3t9KuALb7yCbD3A1tYP7523tM0+ddHAAyZLsUYTk3FQE3jaLZ01BFFOcY//NXOA59lnyUIV RImm20WLIQ19fCcdmR47osLi6CFu7nIel09PmSrKb1LVZZbCSZx9xAG8dyTjMcuL81SrVYSE 1KfUqxUGgwHlIkhdodPrMFebpxNUGD+8xSsXlpDUKBXg8UhSK60z1/kUV1vFZ/65FZGnLT8Z DR/0JYlTpIMBYRCilWZ3b5/d3V0qlQphqGm32hREBp0NsuXXp9WnPh26vnPCAZR4vkbYsyzf 2dUECetyqaRxDz9zdnpvRxO5qYMdLQw+ezkLqTAThjkh5a+fA0iZc0o6nlrw4iSu56h576mK Ort+i1nktANpRMZs8QHr6hwqC0l8TtCKyCkQvfc4uYJy21wvLPDTfsjZyOK8w7mcv39poYFz DusMQzVghgqqpJGLM0i3j6FGv7bJijrDCiBefwXvDFABPKuxpbv5EEo1rC4QZ+4zwW2nmcaS nb3KG8WEo4nQwekonUFVRojF10msO1Z6rYqZU+P7g7JnRdSeWaN/Ftzh0dYGoYoQSjEejxGj kFJ3QK2SM3GUmeHx5hZzaxHOmmMQjsTBo0RzqXA83D1wdsgjgl87BwBO3R3lpPnyrEqIsbnk qkCgjxAxhSJiRpVR0uHTIQPfY8PEXIkOxxu993gRof0WX6jM0fJtsJ6aahwDywU6RPgBI4aU qfKL925y7sw6VPYoHomh88V/aNpmLNoWm+EZGjh2EoksSZ728c+yinQMsuMD6q3OgMZsHbV/ B5whbVxBIk9cw7NsyAClAkJVQIsjOKoJAM+ZjCF9Ej9mlvnpILv3ns29bZJBRqVaIlIxLnV0 t3f44MM9kjSlVCwipKDfHyGEYGFuloMCU+oFD7KTDvC0/Vo5gLEZSj0bv3Kw9NudPhtbWxTi mPPn1vO5W5Uv/iIlLI5Oe8BsvYr1hoyUYmsT17hAZkdcKyQUJ1/kQcfXUsM7g5Ij8EzLpIic NaHrmsyI+WO76JffWCVzFW6bB6zJ8zzPhAowQgEOI8BnLcZBidg9H4Cmg2haFFgOLRV1uPib 7HL/0/ssXVrEVJawKnwmwdSp1yQVC2o9352NI1csOPoHuVqLTgIsFoTAinyoRShBvV6l2Cgz GifEUYgQORtcY/Yy2zu77O3tsbi0yPxcg+b+/rF+TEV5vlx86v1O+/yf+9P8AzSDQR3Zra3N UY8HzRxrzbQzDExjc1dOubNxl3/0ze/y0Y3bSCmp1Wp0Oh2kkkRRgtSCu796iFaK8+fO8qu7 N6gtlvj5z3/Bb37z63xw7z0uXjjP3Xv3KZdKvHz1EoaI2LWZketYd1jJyEgZizEpCUPfp8oM oZbYbIiXFUb0p3MNp5mQCpeNmI8UW0NLWTqcKBGfwu1z1JQOjxHP6sEOs+MuQmm8NSx6w8JL Z8mqq3mj8JT5YedtTk57pHstpMqJc63JYRPPMu8x6Zhq2JigVaHrW2zY+yywwpm1FZSTiCNt h2D/Nnb2JaqlmFIxJF4DupZLF84yHCVIFUwdoTb56vMutsF4c4KK/YXuBFt/smvpJ3qzqU3y XefADvh9HGR2npl4ljAIGQ6HdLodbty8xdUrl7h77z4zq2UebzximAxIkpQPPvyQN774JXq9 HufOneXevft86Ytv8cmtT/HO0R8MGIshLd+h6RXaPkYpPT0dCqLIispFA3MxbDE5HTTWW0pU nyuRJET+JZN2uD0SzAYOVBXlRs+/QdNQUBC07jHwXUZz50nq50jnLpPNX8OUFnA2y/W1RK5P fNSkUIwZ0fFNhMhFqoUQmCw5tat+mtksxZoMY8b0TJPEDRmZPjqTSCdRQYgKQnQQ0YnXuHP3 PmGgWTuzxIxeYL7RQKm8eemcOSLinf9471FBSBKk+X2f6BG/8AMx0VPMAEKIHPzmHEPZx+On O+sBE0/PSd4dhqzXayglGCcJSirW1lbQSnL+7Fkknrn6PL20S0mVqWnLO798jzAIGI1GrKys 8KMf/4SV5UWyzCKkRiiFtzASFiMkKvk5hBdwqjGdDYhEPGUzw2zig1WaZoMlufbczykACnW8 zxhYOBMayHYgvgjWn1qjPzDlUtTubbr1Ot1AMHsww3DKcw4GiKRUOCHykNF7ZoNFrLAIJ09Q mX8ey3wKE8BhQyxSoEhlEgp677BZSuZTtNBEhZjlaoDSIcIZtDlEtI6ThEJ0ckl7Z7HOUqKY XycOzS6eX7Mk+ADi0PbNHHFJfmzn+J38aG9ox9crYyozV7BZyje+9qXp8501vHTlAt47rlys 4nFE7cc8yeqI7mOuXFigVFhGMuDq+euT17SARaRbOF0mdoL7ScjF0lm8G+cwCp/i9Pq0di1F gpARzsPWvS7XLs9z+/YDrlw6zAOEkDzZ3GZtZZn/+J9+yFffuIZRdVYKikh7lA8ZJJaHj59w 5dIFQOAmIYwQEt28i/ApQ2FJls4wsD3m5RLiM4IC5y0tu09V1QiDEt5bngw/oSAqBJOSZ5pZ giBA4MiMJQg01nnUMyqzBpNj9CfhangKpUmXNmVfJZIxBd8nO0WXINCnL2chJcKP2d3bZa/j uHKuRi+rsd9s/3o5AD7venoJZV+dOsDTlZ+dVBEKkw+2P70Teo8gP+rzAXbLciNjqbGEFyFe BBhq0119aqpBkO3y03GD3UxzLsoAhROLSCWQdgtFhhUzSNejpUqUsNz84BN6rS5ZYumbAZ2d HlEco6Tk1q1bvPXFN3nw6DGRsAwHPeKZZf6s02JxvkJ/uE2lXJySziodIF2GuP9j3MIVsuIc 2nu0h5J8dqc28aMpHqpt9vjw5/e5fu1l/vOP/4KXr11Fa3jYfsjaosUmng8+usGFC+cJtWJr e4eXrl7h5q3bfOULrx15zfGUV/RZHeqjpgmmjpGXj9UpdIqH91zRR/g+QipSM2bPScJynf7j h/zywwFXrlziwcOHL3YOcGDOO8bJAKTAS0+B4nTxAycWeddJPh0/bwA9T95+/JOf0UtHiGgJ JxdxlHD+5KjiwXtoNYexMaHamj5svcEYixGLGJV3Ob2zzJhNQr9FY67B9TevolVAe6dHt9tF ScmXvnCdixcvcPXaec5cXMXIgGvf+Cc8uHeXL10s0m/u8/Yrl6fIS5UNkI/fhZ1PcJd+C1PI E0/rDS13EjF71Jp+d0rQ63HUZqr8/Bfvsr5+hm5vwHvv32G+ssTeTpfROOXK5UsIBPcfPmJn d4+N7R2qM4cOlvgxbsLj83mtJmZQUqPECDlJ0o9a33fp+w5SGAL/BITCqhUyP48VyzRtmXv9 AWFRsbg6R6vX5Orli78eJ4A1Gd574riMNSnSP780eCYyPEo+o4MpBJCCr5NlOYjOZCmfNbS+ GFo2snmGTmBFG42e7q4d20ShKKlVArELssBrV+sEoePa1StsbW+ztrKEaFis67G8PM+j7cdc u3SVohnwF+9/zD/9p/+YknzEK7Mv8/Hd+1xqRASjJuzfw579ct7rmCyesR/R9LtETE4zpaal 2aPsi0v+7LQ+P8cKhbMzXDp3EeEdu7u7rK++TblaYbu9AdYzX82RmtVyASEFxUKBfv8Qf2Ox FMXnm6ZTtJHCIITDGodgBLaTJ+PeT+YYoOoKmKSNKLUxE7aPg5KtFpozoeaHQYnVM5pSKaY1 7jGrXvCJMMghDh5PoVJjlHVRXh+j7D7NGtrR0KfXu4WQSN9EkfD2Gy+hdh9gRJ785ezMz08C L8eGyzEIKUhsjEQeqfAIAiJ23AaLSiKooebnkGmLhVqBpdkKoDAuQ4oxZ9ZKjAmoBg3ko3eI r36NmfgTvD5DzYW89cZrNNlF3PoV5uJv5cMsOswxPUpTEGVmkVQSh2zfxVUjrJjB+aeKB4Al Zd9IGtoRHbAvBwX8cmWizuWYn28wsn2cTVAoanMFQiKkkJSLh5uOPGXnl2KM8m1ypIgCDJIM q+bJfD13yMltCnwLYTYQ3iHxsHsH7zWycAYj5hCn9CoKosQb5RZjH7A5LvCT1jxvVZ682A4w zPpI66lUG/Rth65rUqX+mWNzzzIhJMo+wKlFUl/HjWrlNwAAGrtJREFUOUcg9bSv4L0/HLM8 pdtsszQfJBe5AkpRVTEmnYZgBzia0EdkDJA+Y2THGBETi0VwAqU1zmU4D4EYEvkeMrNs6gZv V0Y4YTAyJA5i/P4D5tuPGK1cQQSSwAdIpZCqiM0StrKHVAgRzT2S+ZcZiSEVPwDhcEcEOrq+ RUrKLwZn+a2JsuXB51UiYNdtsMQau7t7bD1qsn69xrvdNd4sZcS6TVlUCGVhCkEIpCdwT7Bq FXyK8vs4XyATy/mOLnOuH+PsFKadOOi73AHRdYRaQmx9BHjcwlfJgNGo+QwuCADBQjTH2I+o ZR2+Xt/n9rDxYjsABorlWq5O4tKJyM7x3f/GKGBBWxrBZ3c4pdvC6RWcm1AMSok/wozgXE4p eBrVNxxSiRzEF9aaXAP4qWGUumwQeEeGnCTdB3PGHqmDnC3OOfb2Bnzvz3/Ev3olZNFZGN3C qDKx6uRw6/ICsjhLYTTA92/gTQJhGR/ESCFZT/p4ockmWP6CL2AoEriHeHk25w/1hpEfooTi 9ULKz/sR14spde2xNiPWRVZMri8wW6swNztDKCLOFpo8SWZ5SQfgHpIZSaTLuTSpC7H6DCa7 jRERSi6hfB7SeDx5++b4PXycKNYPIOjjDn7nBu2FZcrkm4YEYvvssGocJDSTTTQBCk1ZJbxS 3nixHaBQKBMEMdYkVKljMScSr2uFjB/0Ii7SJdJtYoqnYteFAOE91h3mBkpp/HgAEzbxkR3Q 953p3PDTdhqLgvn/2jvTGMmu8zw/59yl9n3pvXtmenbOkJzhvpkSwUi0JCq0ESuKjITJDzuA 4QBSEGQxYlNGAgtIAMcIDAWRgcARFIQwFJGWISsBYkcWLVKiuA2X2ZeeXqb36qqu/d57zsmP W13dNdNDDqEkUqh5f0zXVN+69/ats3zL+72f1yESS4Z+ys7EUc8ON+E/2G60n8fwuyH3pUSV J558EpEAsXQatXEW+8DTePFif1fZOmOY+JH4/gZRLdEI/PRYz1be6bcYtDWMVGsokcf0CEUa Q8nxGXZ3LBRmkHUaF0nQYDkurohwJdAcMmtomWFNNMnoKO5WGyWlQOyhS52E3hYSuBkaqhUW 9QsH6SbwiwdxTOcDPwchs5SgQ9BTjEiSDktQWf9oTwDLdtDK64fLtnT5r8ekG+AbSRRJ3VQR yL6TJoTB0ssIowms0QGCmVYBzo4voEMbjWbNLJEg1VdIvh6m57xtKVIEXgdp2Vg9H6JjWjgy zAa7MkLKzfUymhq7sYzVWMEgMPk9FN0kynGx7SjLe36JEdXaNYlltMKgWGKdieg0Tb9GTc3i igjJXjujLSjt4EgNZhNEmgx5NIoaFfJcX1K5+wgci4BUVVJ2iZYSCNo3LCxbVWMfBGUURxMi 1GL1mig3NGF3agIBA4p3rY5HNOIiRRg2jcskY3pPn57tyCgxHf9oTwCjFeYWVoiwusvBUGDR zPf7ifnGwzFLXBMOcZMkuYuVZHawSF1c2oQaQC0aYNh1EmgT9rDaohl3TYeIiqJVgO1EWFez JHQ4IEciewm8DgaN1a0hG8t4w9vxdGUCLCIoaXNel8jaS0Tri/ipkRuuu2lCe9wTHpumihCC jmmTFlk2zQYJUn1KuG+KWKKBoxeQchgjHOIkMNoM7KJGqzAz3IvNS+0j60ukg1Ui6T0YHcHB H2hXdKvYokmvqTZdukzaBWRtgaB8GHYVLwjvq1ZvsbC4RDabpVqtUSzk6HR9arUa2XyWVrPF tYVF9uyZ+mhPgL4JwVbN77b8xxYDcicZTiApiDIRK44wTRy9TiBD2m7T1AcIX1sIigew1y/i 56eJiyRN6sRJvm8J4PWKcXVq1HSFjMhT8VbI2TGkFUfacUxzHbs6j8RghIU/ene/AqurGmzI ClOrEtHdJBGr4SeixGbOhT5EemzgOgE+UTuBo5ywDhiD1ePyrOsV1llhr3VoB4cqiZZpLL0E KIyRYGmMAmXnsTodZKuKVB5ChGoY2nKQ6WGC1HFkLwFnC4e8Gdx9tVGss0KS9C6LRGj/Xeh2 yTlVYpaFjepzeIxWbHXg3Elh93yf2JbgrjEsr6xitGKtIllZWQmfmeeRzaQpFgvUarWP9gQw Rvd45yaMtkCYTLFslFZ9+cOdiEmQwSxaptmwo7xbj1Nw2gw7AVVTwcHBJcpmtYXSGifiUJYO tt8gcJJILJydzE0hUMrQaLVIJ2K9twa3paIYAhEmnBIyTVyt4VPG1sv4i6/h7X2Y1OwZ/LET bPElDBor6DC+voIuH0MOHeKuq6/SqWtWhu+h1F3FWX4PM3FPvww0abLYMoLXbWMwKKNwRDgZ GtT6VOwubdq0KFAOHWFRBuDHTZd90YCSC45/BWpziHgeslmwIqhAgzOCiCSg2+4PUhgsNlJG oQjwTHegcEdIm5dffZ1IJEJ5bBJMFyOiWBEXWwj+15svc/z4cUStQbPVolQs8N6Z89x74k60 8vvkwkwqjjM1QTQSodXu4Lo2R4/uZ6NaIRNPY4xhoQP2DVwg1eLaapd4VJDNZmnU6yRT2ytZ q14nkkrtJp4GQKfTIRqN9n/2oX06viQa+XDlcfV6Hcdx6DQ3EZE0meSHF1dVZrvAw7EjXGlp yrKDaw/q81imgrASoNYJZLhyvrIRoaE0BaeNZzyE8NEERIkzO79Ip9MhmUrTymVZmZtDBQHS dshlNYFSJOIxapt1qtUqQaAYHx1mcqw8SMFGYLGBJQNyuovw5hFWFkfMIdbX2BidxvZbJAp7 sWsLBD3ZEUvYxPwK/vj9YQ8wrXGaa1zdc5L36hZPZ4YRjVXk/Jvo1DAqXsA1DpbjAAFpkevr HUlhcUAe6ys3e4Tksy7bFIiKL+kYQcbSYBTCiuCXHqOfMVMgLY3lXcAPSiiS/eZ312sJaRQb Zo0xay+W7dLPvhloNBo4jkN9Y42FuXmcPVOsNltYtk0m5jC/cI2FhQVc12V1vbr1CMNnImXf v4pHw/Mm45He9wuFdB6MRlg2ZUfy2qZ1/QRos7RSI6Y3mBFQbxnK2SgzSzUee+AE7UaDxfUV hKeoNzbRkRSuJSmnLC6vdigl4Npag4mRHGvLywi3gBEB9xwd5d13FlC2zXg+Tqte5+zVZfbv G2Gz2kBaAldaJIZGsDdXOXVliYP7pzDYxKMOrVqFsX0pvv8/v8Pe448xMXSjKbIbuqZLW9TI UujL7V1Tcea1Yakl+VyhgwEsvQxWHE9VUbKM0/tO40Aqssm4I7F6zlqA37ff7zp+lKtz17h0 6RLDw8MYpTBC0Gy18LpdFhcXKeQLSCkpl3K0vQ5t0SRJJuTM62UkLZQo4eksUggc18UzZaRl Y5smGWuMWXWBXOwoor2tQictGx1zd/i7BpEsc6k1wt3xLoYuFPbhRzLY7XWctXOYWA6dHkEK SYxB/s1O2fI4CaSQA3pIeUfzmNPFEk2EbuDLkRucba0lWu7Foo7DEr43HA7w60w+C5diLxy5 s17Asl3uOXE3sWiEtY0NJifGKeZziEI+1PPvJFFugohrk0wkcF2nZ+aEC9xWN51dczAq4NR7 55maGCObihMFHkteXxNsxTiwN0q16mDqTQ5N51BKsS8SDrhYMgmOxPMVnQBGJ0axMEjjM4xH XLTJESeTTZEvlFhdWOTctRpY04yMlAmAdDrB8FAJZcUZHi8zMqwIuk1WNlqUEjYyM80hGSeV jGJkhGTMpZjPk0xGGZ+aJhW7datNCkmCdG8rDt97KNVixSwg9D6kFEi1gLYKKBOhicbVAfQc NiGbTETqRMn0oyS+8dBGcfLOo2itOHb0EFdm4kxNjODUZtH5vaiecFSYrtdhCJIwSrSkrpIz AcJ4KFnG08X+vQkRoJQEAXJzEZ0oYWFRkqPobm1g5xXBMsYZ2qYsGIMWkknbo6EFayZGIR4D 5RPE8hDLE6lcwk/cKIwFYe3uli2+s7HITthUMEYSiG091I5p9zu4b0GRwggby2yggu0Kt53H WgjUdbF+FXj9tlQjQzlmvTGKyTDaJqWFWJonSJfIp6f6nynlM/0dRmuDUhrrJrqr99x9fEAR 0NzQJtWKk0pBKnXzhEK8ZxKNXBdkSPQW5Z2PN3U4y77D4euxscEV5/Dh6R3/y1Ic2vm7A7te e9+Bwze9r93g4GAJNywy6VUJWcJiWIwznp5DKBESplRAg/UbpA9/IWXhm8xAiHCreHur2EP5 XSbHyqEDaGBzeY5oNo8r1hHahFlfr4KxCkSBfTKDsTIoYiEvybKRjSWsZgXtLSPKJzERG9lc xR+6A4whbeWwr71KMH5vf+BJ6qE+aW8GyLWLUNrPtAjwNFzoxsjbg7QMo7y+83s9mqaOj3+D qsMWLLOOkUkaWhHbscD6dHdVetMmhs3mgB9QN1UM+qbh4Z2whY3QGuUH2G6M7373f/CLj9/3 vp9xHOsG/2onfN29IWg7OAF0wNWFZdIxG+lE6fga3dkkmclTq7fIJ12qLUXMVjiJHM2NZXCT BK1NMvkcjXYQ9tgy0NysIKMZGrUNXGmIprLUNuukoha4SZq1CrGozZWFVSaH8oBipW6Rj0O+ kOXS1SWOHprmJ4XSCinktiK0ENjBHNqZQumwTrjGxq78IIHYlZu+Gwwgm+ss+0XK0S5WcjTc mg1YVgx0KzxOKEx3AcuJY0mD6m6CU8ArH8E2WZg5hR3PQ2MNy7mCNArRrqIyY+h+G1WF9i0Q W5PBQNBFO3E2PMMbdZuHsuoGSrbKTmGvnkWVj9BVHRrUSJHFFvZNk3fh9QRC+QQmQsMsDtCX UzeZMOEzSSJNA93TB7WFg83NhXV34mzbJiF7yTy/y2fu3YvnJncNf24hrAjT7CrxDTSp4xh7 IH8wMAH8dp3Vah10jHZ9icBOkI47zF6+SLWj6OTTOE4ED4PebOLYDpImG+vXuLa6Sa6QRflt VNBbHZfO4E4epbpwgfVLswyNjrDc9fGqF0kM3YHf3GComKdW3cBXXTKFcS6evUB8vcRQ/icT U9rCltoDIpTEi4hFAnuyX9utUHim+4FVV7vBNx5n9VuMyb0MdW10foq9kdBX2MlVV6RDJWnH RRtDYDx0oIlE4ygdrtKWriLbHkHpIItRj3h5jAwpPASO34Sd9n8wj3b2sNUBW1auoIsHwoVW G8bcgJQlUcF1E8CJQ3YCa+kdXFsiCsXeTraLWSkE0mxi0cAoiZLDYWJO3HogQosUwp8BO4Ey W1GfW6NA2wKGnHAc2bU5glj25sK8/VsWKHVzSkuGPEoMZuMH/nIrmmAonyUZEWQyUzTbPsV8 mmI2TaXpU85n0MbQbtRwEjlCUqBBArFIFE84ZGMWq7U2xVwahoZYXV0jkyuSTmdpC5dyJI4o jdOsVcgPDVOrVslkC8QzWeq1TfZNT5DJ5qi1bt7l48Ng64FrFSCoo0SuL5kOYRQkLpIoo7Df RxdoNzjCZZ88gnbArF3DjByDm/CAtqACP5Rn1AGB7/X4QR5vvnuJlaUKj37iYYSp0dSb2MIm iYuoryAqV7FTZZR0Ecb0/gYTOtPS4szVBQ4dPEDl0nmSw1Nh/W6vp9jWNJi5Os/ePZOo8lEs r0lpdQEpqgSZMbSTQJpVLKEwhDF9I9P4ZjTcaXonCVSBrtR9QtwHPPze6AijVjmKNz5jITh3 4QrDQyVymTTVzQaJZALPCFwJluqCCVgLNHEC6s0WpUJu18mgtX6/6s9dMXA30nKZGNveCrNb u1skQnxH4GUgxAmMjA6unmOx7dV7fHwwGdM/dyrcRmPD29dLxLZtyeRPJiUJbGnybNcCO3Tx 2d6ywwemyVgfLNh6MyRECltEwNmAnlZOyzRwiOC8T/ZTqaBvGwtpcebt03zhV/8OjY7Hn3/r +5SGCkQTDpVrdY4eOcT8NYvlH/03PvvUSX7w4wu0Oqf57Kef4pvPf4OPf+JT/Nl3voXWMDc3 x2NTk3zzhW+zf3ofq2trTE9P02k1+cvvvcSjjzzMsSP7UW4CVTwY9kJbfB05PIyWZbwtrlO/ JmBwRFUCyayyOZH44AVKoEBG+mfYzZy8PDNHOptlcWWd2YVlkskkb5x6l7HxcV7b2GBoqMzK ShM/qJFOp5mbm+epJx/f/XpC4LjbQ1rrXiG/sFGqgeUM+njyhjyAV+edC9coFTP4XZ+2r0i6 YLkxuoEhaFWJJtI4rsv6ygqZfJ5up4MTTTA2vHt04acJIUSfdiClQQcSYckewaznmOkaWasw 4Kx9yIuECbdkGbl8BlU6QpdOr9vj4ATYStVLaQ0I9NrNVTwZ4b3zVxgZHiaeitDcbIGMcN99 97C0uEi30+HEiZO0ahtcubpMMZfFX58jmUgSj7pMToxTKhU4f+EcUgg6nS7lUoHZ2VkuX75C MZ9lfHyUcvl6PpTBFPOIlQomn4PrO0hehwPRgLq6NTPGGDPQlWYLgfFpUicj8pRLRS5enqXV bnPnscMsr1ZCol63G3a89DrheaSFVuqGxXcntDasi2XyJk9UxFCqgVKbCGFjTIBlR5EyEpp9 QmAvn0O88MILBuCZZ56BxiIvn1kimc4zlJLMLVdJRaDdblHzHKzWMonCCEIptC0QVpbJguTc Qp27j04Tj/+faYH5k+DFF1/sv37kwXtZXlkjlUpy6coMB/YfoFKpsLS8wok7jyEtqASrZGSe xcVVpqd23622sLK+QT6XZWVlFdd1KeRzOI5Lt9sJE1+dNcBQTcZJigxzC8tMTY6ileoVomwX cjeaNZKJDE57HaN8Oq7k2krA5MQYc/PXkFlFoAJGUlMEHY9ABUQjEqe9SJs86/UO07EWi7Uu sdIE2A6tVpj1vCxyTJsqXc8nHo9ydX2GoWKJuEhRrdYY3jEJbLOEtobASOyFN3inXaBcLpJN Jbm2vMrIcIG1So10IkUs6qC1RghB1w9QQUA0GsXutUzdrRuNZdYwMoc22xNBG02Tzb4DLaRk q5eCEII3mxHuTnSwLAe5doEgv7dHlaZPudgNjVaHtrOJtnyiIobTrfaLbwxgu8NEI1mU7+FU Z9DJ8nU7gJvk+F0nSPUc9aHRCW4FD9/Iu/qZQHWzQbvdDtWUqzVWVlb63cjfPvsu9WqL4aEy i95GX1hV98hdu+HSpRkaQ2WWl1eQUqKM4NLly2QzGS5evMRddx5jcX6WvfsP8s6VN6k3miws LnFw/zRdr4vv+2hj2NiokUxGsWSdIxmFX5gmGswzOT4KxjAxNoIyAW1axN0ogRBABFvPoLPT xLUhkZEw9yql6fuxV8/hJQ+QSqVQvke3Ae14jqFUqIlzcHQ6VFtDDAx+SzQxRNE6tHd06RD6 yhKddptTV+fYrDeobFTRSnGhcRmlNZ1OB8dxSKVSOLbNpcuXicfjHDwwzb7J0RuemZZlLDWL tia2Q7hCktphiu4MGFQ8wYTb5fLMPMMRj3guS11tEOCTE0XMLlpP/WtpgyNtuoRtUB0ZpSkD AqvXB86sUvQkSUI6uLJj10+A1PtU1Pz/h3KxgCVCbZ89EyUMDhCGyjaqVUq5IqPDQ1ydWyCd DEN12mjkTcJo+VyGCxcvUSqV6Ha7tFqtfnj1jqOHOXv2HMOFLBcvXWF0ZAjBKo889AB/+Vcv kcukaXc6dLsejzx0Lz945VXi8SQ6FUOYbu/etmEJmyixfkWUkBZCa3Qv8mM1ltGZ8b7jZxP6 Oy9tRsg7mpGIQPk38nAAzjZtXm9HeCa3QsLeTmpt0YyVBsu2GRkrY1sWOoCxsVFqtU0s28ay QhmZbtfj4MEDxKJR9k1NwK5CZBpjj2IFqyi5Ox19J+KWpoHLiNslNrSPNk08mmQpfOBnpRQ4 MgoYOqZNw6bvhENYitmlQ7y6gRw6CJ63bQIdPvzhkkw/qzh79mz/dSr1UZrOt/F/A/2lYefA +aigXq//tG/hNn7GMbA3flR2gdu4jVvFwARYWory8Y//8U/pVm7jNv7f4+dCGe42buNmuD0B PkpIxnnuuY/x3HMf45ET2z1z82N5Hr9/MFH57D9+lLE4CMfm1//Rg3zpHx6/pUv89m89esN7 Dz5xgH/+Tx4gHQ1j7p/53N38zm8/xonDt1a3sRt+47cepdC79+ee+xi/+ezRXY/75C8d58FH 9/D5T43zd//ecaaOjXLiUIpDJya4/9jNiXpb+EiXRP7codHia9+a4cu/XOK1i13+7b/7JH6l yrvVGL/2iyX+xb96haefPsz6lWukDhWJ2XDo5H4ePxThy79/moc/dYzowjyPfPoYsx3J3pRg 6fwC5Tv2YjuSH/7pGxw9UuSL//JjfPPrb/O5Tw7z+390mmf//nHWV9rcMRXnlXNNnv7bB/jK s3/Gf/iTv8k/+90f8w++cIC/evEU9372JHFHUJmvIr0Wr8z4fPqJSZ7/6g/5whcfRmj42h+8 zK/95gPc/dAwL/zeX5MYK5BpV/nd/3yav/HLx3rH/4DHP38vZmmVRjbN6YpmcsQjMpRh5M5p Hhn1+aNvXqU12+HLX3mSSLvBiz+o8iufGOVP/+RNXnp9o//Ibu8AH1Ecf2yahTcuYKZGWXl3 ge999zQ15RBzDU89dbB/3PlXzvH1v1jnD//jpzk4mWEo63D0SJE9h/J84w/+msc/c5SDU0l+ 76tv87c+G9LT3zhT5w///ZOcf/saWC628tkzGuOuB7YTp91Gh5YWfP7Zu7E6AScfGGVq2OV7 b1a59Mp5jpycYmw0TTSZ4BceGiEXN7z8XoNf+fxxZn58ntdObw/SB588zK//6uH+8Y8/cwd3 FXz+zVffZv+RYr905+iRIj96fYFvP/8WMpfhzgemeOq+EiOHhsmJgFQhTjb+c9Qh5ucRXrPD uZk677x0ifGTBxBXF3n57WVG7tjDkb1JgnaXU++uMXNujXYAY4dHeeL+Mm/98CpvnlrigU8d ZelqBZB88Xee4DvPv4WVTPCvv3QXf/z8OU6fWeP7336HoaEI//1HVVABSxWfmQsVTK/o6Ny7 Vb70lSf586+/yn/9ximMIzlzpsKZ02usLdZYrvqcPrNGKumyOFdhdrHJmTPrLM9XeekvLjJ9 /0FifhcPaNfbfOM/vcbX/svZ/vFX35rj1LrDP/2NO7l4Zo1KtcnsYpvTZ9Y499o89z11B3qj xjuvzvK9tyvMXl5FWjaVitevqdjC/wY6QzklPSkqPwAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAYAAAB5fY51AAAACXBIWXMAABcRAAAXEQHKJvM/ AAAgAElEQVR4nO2debgkdXnvP91nmf3MmZ1FmBlh2EEFEREBQURwzY1r3EP0xmu8RtRHjcYk aqLBG40ajVtcEw3uaBQEVAQBEdmZYR8YlmGYfT9n5izd949vl13Vyzld3dVdvXw/z/N7uuuc 7qpfd1e99b7v710yGFMkA8wHFhTGImBxhbGo8Lo5QB8wG8gCcwv7mFvY3x4gX3jMASPAZOFx J7ClZGwFNhcetxfGzsI+jCGT9gRMy8kC/cBy4GhgZeH5SuAQYCEwhARSf0pznECCahewDXgU eAh4uPB4b+FxAglC0yNYYHU3M4CDgBXAscBTCo/HIIHUyewE7gbWALcDq5FAWw/sT3FepolY YHUPWSSgDgNOB04Fng4sA4YL/49DvjAmkRaTKzzfTdFkGwXGC48TFE2+PYV9zKVoMgaP/YXH YWReziv8L1sYfei8jHtu5oAdwCbgJuB3wG+BtcA+rIl1BRZYnc0i4HjgNOAU4GQkoOL8rsGF vrkw1gGPoAt9IzLJAn/SDpLXXgYp+swWIJN0GfBkZKouB5YUxgLiC96NSID9HrgOuAP5y0wH YoHVWcwAngQ8DzgXeAa6uKfzNeWBMaRpPAbcGRprkTDaWxiTzZh4A/Qh5/4cpJUdBhwHnICE 9SHATCT4pjufJ5AG9gfgcuBK5B+zCdkhWGC1P0PAs4DzgDPRxVqLgNqK/Du3ALciR/X9SDh1 E8PAKuAo5KM7EX1Hi6lNgK0BrkYC7HqkRZo2xQKrPZmHTLxXIkF1IFMLqVFkut2MLrprkXDa hi7KXqIfmY6rkC/vmciXtxD5zqoxATwBXAb8EPnAdjV1psZ0MLOAs4DPIzMtP83YAvwM+Gvg acgsMpWZgbSvdwA/Rb666b7ftcAXgbPRb2NMz9MPHAl8GF0gY1S+eHLIv3QX8G/AC5DJ09f6 KXc8WbRYcR7wGWQSBoGtlb77MRTz9VEUt5ZWbJoxqTEHmXs/RYKo2l1+ArgB+ADwVGAgjcl2 OQNI+/oAMgMnqP57jAA/B15NMZrfmK6kDzmDL0IBjtUujL3IUf63hdcPpjHZHmUQOe/fj36D vVTWvCbQ6uL/Q6uV1nRN15ABngN8n2JuXaXxAPCPWJNqFwbQb/ER4D6q/257kZP+bLyIZTqY IeBVKFhxnMp+qe3Aj4CXYKd5OzMDeCHwA7TyWknrGkfm+5/R+WlPpoeYB1yIIqorndg5dMf+ AHK4+67cWawC3gfcQ/XfdzXwbnQuGNOWLEQn6Xoqn8ijKLL6Rdjk6wb6gfOBXyBnfCXB9Tjy hy1KaY7GlDEDeDuKJC8VVDm0LH4xCmK0oOo++lEmwrcpJllX0qgvxPFcJkWGgL9EMTqVnLFP AJ8GDk9rgqblrAQ+iTSrSufEQ8BfoXQiY1pCFvhfKD9vkvK76U7g4+jkNb3JoWjFdyeVNa47 gJfjcAjTZJ4OXEq5oApSZT6JqikYAyqeeBE6N0rPl0ngCpQzakyiLEVpHDsov1vuBj4HHJHa 7Ey7czjwr+hcKdW4dqH80QNTm53pGmYhn8N6yu+Q+4BvoWVuY2rhcOBr6NwpPZ82oET2qSpK GFOVE4FfU55CM4FKuJyNfRAmPn2ortm1lJ9bk8A1qHKs4/NMTQwBf0/lNJoHgbfg/D7TOAPA n6O6ZZXSfT6KI+bNFGSBM4DbKHeq70TO06Wpzc50K0uAf6LcPzqJVhOfgzV5U8IwqjNVGrGc A36DVHRjmsnTgF9RfrMcBb6Aqqgaw+lIqwqv3uRQ4Oc7cVKyaR0z0CLPBsrPxzuRtmXfVo8y E+V57abcqX4JDlMw6XEYKllT6pTfC3wIp/j0HEeiFcBS9Xs9qibpnD+TNgMoGv4RKq8kHp3e 1EwreSOVc71+jmOqTPvxZFRKu1Ku6l9gE7FrmY8iikuL6W0D3oubC5j2pQ94F+o1WVo08Ms4 mbrrWI5WYErTIu7EuVymczgZLRCValtXI03MdDgZ4PmUF9Xbj8IYhtKbmjF1MRf4FDqHw6uI G1AZZ5uIHUoWqdG7KA8CfTMOxjOdSxZ4E+XBprtR+Waf2x3GfOAbVK61fVJ60zImUZ5C5d4B 38aBph3DElRnKByyMIlWWg5KcV7GNIMDUOel8PmeA64ClqU4L1MDxwG3E73bjAD/gGOrTPcy gBrvlqaWrUGNXk0bcirqxhv+wbYDr0U2vzHdTAb1wdxGeTD0GSnOy1TgtUg4hX+oR1CeoDG9 xKnAOqLXwg7gDSnOyRTIovpUo0Tt99uAY1OclzFpcjRwM1Fn/CjwNmxtpEYGeA/l5WavxHWr jFkMXEZ5/OEHcKxWy+kHPkg0eG4ShTK4SqMxYgil7oRXEMfwIlRL6UN9/8I5gZPAF3HpYmNK 6Uc5tOFSNRPAv+D82aYzA7VLCn/5k8AnCv8zxpQziG7ypULrc7i2VtPoQ8IqrN6Oox/CqQjG TE0GNbYYI7pA9TmsaSVOP+V3iDFUMdTCypjayKKFqrDvNzAP7dNKiAxysId9VmN4tcOYesig XgXh1fUJ5Ij39dQgle4I40iz8pdrTH0EIUFh8zBQAhyn1QBvIXonmMQ+K2OSIIt8WmE3y34U XGrq4LVEI9iD1UALK2OSIQN8jKjQ2of6HpgYnEo0NzCIs3LogjHJMohWCsOr7ztxwnTNHEd5 1YVv4KBQY5pFP4qID6fxPI4KBJopWEK0nlUO5QY63caY5jIPuJSo0FqDiwBWZT6qFBrWrG7D iczGtIrFwE1Er8GrcLnlMrLI7Avb0Y/gEjHGtJqjgIeIWjnfwYtdfySDutuUVgp18T1j0uFU yiuXOvaxwPOJtuIaQSENxpj0eCXRGvG7gRelOqM2YDmqOR0OX/gHHG1rTNpkUOR72E2zgR7u MD2faPv4HGrF5SRMY9qDfuCHRK/Ra+hRJ/zniS6hrsZ9A41pNw6gvHXeV+gxf9YbiVZf2Ik7 MhvTrpxANPNkHHhzqjNqIUeiKNpwwmXPfHhjOpQ3EC1EsJEeCDuaCfyaqHr5bzjGw5h2J4sK /YWv3d/S5SWW30901eFO1NnDmE5iAJjdwjGD9vAZzQVuJbqq/3e0cG6t/BJOR7lKcwvb24Hz gd+3cA7GNEof8DLgeUiY5Jt8vBxKl7kY2NTkY9XCScDlwKLC9giKz7oqtRk1gWGUFxhWJ9+b 6oyMqY8B4MPIh7MPXbDNGqMoYPPbwMpWfLgaeSfRa3k1sDDVGSVIFvmpwiEMP8edOkxnMoiK 3oWzM5o59gPfp70CNvuAS4jmG36JLvFFn0E0xH89sCrVGRlTP4PAPwE7aJ3A+h7tJbBAGt/D FOc5Cpzd7IM2OwVmCPgsxZWESeDdwP1NPq4xprk8BFyIrmlQBMBnaXIUfLMF1oXA8YXneeBn KNTfGNP5/JSiaQhwNOrG0w4rmrE5EdhDUWV8Ajgi1RkZ0zg2CaOsJBoIvhd4RrMO1iwNaxYK MptT2M4D/wzc16TjGWPS4SHgH5HjHRTq8cnCY+I0S2BdQLTrxjWo640xpvv4KspgCXgW8NaU 5hKbpURrXO0ETk51RsYkh03CyjyVaIL0RppQfaUZGtYHiU70i8AfmnAcY0z7cBvqbxiwFPgQ be6AfzrRO8+DuOuN6S6sYVVnMfJTB3PfherDJ0aSGlYW+AjFHoKTwMdpj/wnY0zz2YKEeRCb NQ/4KAlGwCcpsF6KGkoE3Ah8M8H9G2Pan+8A14W2zwJentTOkxJYQ6jMRLC//cDfAmMJ7d+Y diJDa30zbe0HKmEcXfv7CttZ5MsaTmLnSQmsP0NlVEG26/eAqxPatzHtRh6ZPftaMMYoRpJ3 CtehChPBvI9BFUsbJgnJPQO4B1hR2N6DotydL2i6kSyq7XYSyp9rtjDJAfcCv0GO/k5hJVo5 DAp0PobKo480stMkSry8haKwAvmtLKxMt5JDRSdva+ExxymaWJ3CQyig9MLC9pNQMOmnUpsR Ktp1L8VlzC04X9AYIw5DUQKBfFgLLElzQu8m2mTxk2lOxhjTdnycqIz4m7QmMo/yFJwnpTUZ Y0xbcgCwjWjVlkRWDONyIdGyxx9PYxLGmLbnwxTlRA54X6snMATcQVRqtlORfGNM+3Ao0ZpZ d9FiLetVRO3ST7fy4MakTD8K55nZojHQmo/VVC4iKjNeX89O6onDygDXopo3oCXXY4AH6pmA MR1GFpVSOQoJrWbHYeVRs4ebUcuvTuVQlBg9o7B9E3AKxcJ/TeM5SEgF6t3FzT6gMW3EIKqw uQWVA97TxLEXLWZdTGdUa5iOb1KUG+PAuc0+YB/qkRZu7XN6sw9qTBvhvoT1cwoSwsFnu4SY wetxcwmPRu3lA64Fboi5D2M6ncAP08rjdQM3oxSjgHOB4+LsIK7Aej3RxhKfQaqdMcZMxwSS GYEAngW8Mc4O4gisOcCrQ9sPAJfHOZgxpuf5NXB3aPuVFBOkpyWOwHohcHDheR74BtaujDHx mAC+RlHLOgB4ca1vrlVg9QOvo1jqdCfu4GyMqY9LULoOSAa9nhqd77UKrMOA54a2r8JNUY0x 9bEW+GVo+0wU1zYttQqs1xDt5PoNumflwhjTer4eej4TyZhpqUVgzULmYMBa4Ira52WMMWVc hWrpBbyGYgRCVWoRWM8EDgltX0znVT80xrQXY6jDTsBBwGnTvakWgfVyismXI8APYk/NGGPK uQSlIIFkzCune8N0AmsecF5o+15gTV1TM8aYKHehBjYB51BsxFyR6QTWKURzmH6EY6+MMckw AXw3tL2caXKTpxNYYRVtEqlwxhiTFD8hqgS9bKoXTyWwhoiagzfh2CtjTLKsA24MbZ8LLKr2 4qkE1rOAAwvP88BPcet5Y0yyjCPZEsR1LgOeXe3FUwms8yiGy48ClyYxO2OMKeFSVCcLlP5X tbBfNYE1A4XLBzyMVweNMc3hbuDB0PaZKPq9jGoC60lEC2v9Cq8OGmOawyRwZWj7KGBFpRdW E1jPI5o9fVki0zLGmMpcRtGP1YdkUBnVBFbYhtxK1ItvjDFJcyuwObR9XqUXVRJYi4BnhLZv ALYnNy9jjCljB3B9aPtEYGnpiyoJrOPR0mLAlcjGNMaYZpFDsiYwC5eg/o8RKgms04iGM1zT jNkZY0wJ16ACCyA/Vlk8VqnAyqL8wYBtRAvGG2NMs7gPNagNOIUSGVUqsGYAJ4e2b8a1r4wp pR81VG0FGVR6JdOi46XJGNEFvpNQAdE/Ulr4/TCi/qvrMcaEyaGSKL9AZcObXSo8hxSHkele 2CXcALyi8HwRcARaQQTKBdbpFCV5HnV2NsYUmUBVd39M67SecXpHYF2LZE/w3Z5BSGCV8i2K fe83U2FZ0RhjmsgiYANFOXRx+J9hDWsG8PTQ9hqKvcOMaQW94KdJi07pcrUDWI0arILisWah iIWIwDqIqP/qFqT+GtNM5gELgGGireRMcuSBXSgAfBvtXSZqEtXeO6ewvQTlNt8PUYG1Ap00 oA9Y1W40JiGWAG9CLZ4OwBpWM5lEK3BfRC222llo3U7RjzUfWEkFgXUsxTCHMaI9w4xJmtnA O5HAOoDam/qa+sgD56ObBKi3aLuaifcB+1GJmQzKvrkCoifJU0LP91GQaMY0gX5U0faFqKqt hVXzySA/9SlIcA1P/fJUuZ+Cz6rA8cGTbOjx2NALHsMJz6Z5zAb+DFiFzcBW04fcPwenPI+p 2I1qvQccR0FWBQKrHzgm9II7WzIt04v0o5WfU7GTPS1mUBJB3oaEZdBRFDILAoG1nGgDQwss 0yzmAm8ADk17IqatuSP0fA5wOBQF1tElL7bAMs2gH6n3z0YnoTHVWF2yfTQUBdbK0D9ywNpW zMj0HPORdnVQ2hMxbc+DRONAV0DUJAzYgR3uJnn60F3ybOy7MtOzi2imzQqorGFtptgjzJik WAi8DmVTeGXQTMdeYFNoewVIYGWAQ0L/sMAySZNFIQznY9+VqY0Rok0pDgb6ssivsDD0j3W4 hrtJlmXAq4DFWLsytZEjGou1AFiQLTwZCv3jkRZOynQ/GaRdvYT2j/0x7cXDoedDwHAgsIIY rDxeITTJsgz4U+y7MvF5kGK+4xCwKIsKZgVJ0HlgYwoTM93LEUhgzUx7Iqbj2IhMQ5AfdHEW +RUCJnHRPpMcB6IEZ2tXph62EfWnLykVWDkcg2WS4zjg5ajrizFx2UFRw4KCSWiBZZrBMuBc tBxt7crUw1aiAquiSbijpVMy3cpTke/K2pWpl51E03PKBNZuVOnPmEZYBjwHRSe7OJ+pl1KL b3GwShiwtbXzMV3KKcBLsbAyjRNuXb84iHQPsP/KNMpC4EwK9YuMaZBw1MLCLNHcrlGMaYxn AedR3lXcmHoId/fpz6KyHwHjLZ6M6S4WAmehkrbGJEFYJg1midYmsoZlGuEMJLAyOJTBJMO+ 0PPBLFHHqDs9m3qZCzwXBYsakxThSPf+LDrRAkZaPBnTHWRRGMOzke/K2pVJirBMmhUU8Atw HSxTD7ORo/0YLKxMsoS7U2dKNaw9LZ6M6XwyyG/1LBzVbpInXP14jgP7TKPMBF5Meas4YxIn S1SrmlvthcZUoA/5rk5FgsvmYGdQ6gpqZ8Jxonv7idqIfRhTO4MU6105S6IzyKJQgdx0L2wT woI13480rKCmu/vFmTjsBz4FfLWwnZ/itaY9yKAqCE+kPZEaCfcBGO0nKmmtYZk45FDdbWOa RTjFa6KfaJxDXA2rU+xgY0w6NKp1h3sBjPVTEklaww6ChOmFwIwEJmSM6V7GUImYUerzm4VD ZcbialgrgRcAJ6OyNM7IN8ZMxQQqEfM74GfE952FBdZEP3LABQxP8caDgTcDF6BVIWOMqZXn AfOAbwObYrwvXGB0Wz8lFf2meOMLUQeUA2IczBhjAA4BXgc8CvwgxvvCMmlLlqjAmodiaypx OtKyjDGmHo4ATorx+qAzfcDWUoHVV/KCMLNxrpgxpn4GiCdDSv3km0sFVqlEC3M3blJhjKmf TcD6GK9fSLRe35YsUSE0lcD6H+AuHMZgjKmPB4DVMV4/TFRgbc0Cm0N/mMokvAn4JdLILLSM MXHIIyvt9hjvWUg0+2ZLFsVIBMGjGaqvAk4CPwauizdPY0yPk0d1re4mqiBNxzKKGlaOgg9r G8VYrAzw5Cl28ADwc+CxOLM1xvQ0eWQKriaedbaSYvrfLgom4Y7CRsDyKXYwCfwCuAZJPJuG xpjpyAN3IA0rDitCz3cBO7JIuwp3V13O1FUbHkMh9vfGPLgxpjcZQb6rjTHekyUqsLYD27NI U3o09I8lRKv8VeLXwOVIclrLMsZMxV3AfTHfMwtYGtpeD0wGDq11oX/UIrA2AZchNc8CyxhT jTxwI3BPzPfNJSqw1kHRA/9w6B8LmDoJOuAG4Ke4vb0xpjJ5VJX2NuDxmO8dQmENAeugKLDC VSOzwGE17HAXcAXwe6xlGWPKySPN6gHi18JaQTQtZx0UBVapulZru/Hbge+hovYWWsaYMJPI EnuojvceX7J9DxQF1kNE62KdUONO9wBXo2BSd402xoQZQ/6ruOYgRGXQCHA/FAXWBNEYiVLp NhX3A/+FBJ61LGMMyARci1YH61FmwjLoHiT8ImHva0IvOITaHO8gp9p1KNTBWpYxBiQLrqW+ rJi5KMo9YDUFH1g4EzqclDgTWBXjAA8D38KJ0cYYMY7quG+o472HE+1HeGfwJCyw/ijFUNXR o2JO7hbgUuSAN8b0LjmkWd1LwZSLyZGoIxdIAaoosB5GeYWghMOnxDzIE0jL2oC1LGN6mXGU bxwnFSfMCUSTnv+4yhgWWOuJdrM4kXhtvHLIcf8jVErCGNOb7Ad+S7zuOAF9qI1gwGZCfrCw wNqPivQFHEf1Yn7V2Az8J8pNrKdpojGms8kha2s19bmHhonGgd5CqHdqtuTFvws9X0w8xzvI FFwHfBdlVxtTjTzpJs+nffzwHLqJMSRHtkz3wiqsJFpE9IbwP0tNvt+GnmdQa6/rYx5wN/Ad 4PnAKZQLRdObBBfnWGGMFB7nIAfrIOqokqm2g4TmMIZ8LKOFOcyk2BFqkOaer3kU8ziGLJq9 yASaQ/Hz99Hc76DZ7KNYSr0enk30818T/mepwFqLHGVBZ+dn1nHAPLI5/5tyaWl6j0CDmEA5 ZZegO3BQmnsGyht7PnA2ytBP8oLNhx43oVpuv0LR12NIQByAbs7noyX1TJPmsAfFK16KvovR wnGGkc/4BcDT0XXZiUIrjyyrOwiZcTEJy5xtTFPlIYt+0OBu+CjF5cW4HIyqk44RVb89emfk CmM78BXgDFS+qPRiHECluV+LUr0mEj7+KKrf9ifAoZQXqMwCBwLnoqyNEYoVdZMYE8in81YU LjSTcoaBZwAfQ77gJI/fqjGCWtEfWOHz1cIAcikF+7ucGjTeD4XesJf44Q3hg78JhUuk/UV6 pDd2AP9ObXF9g8CLgatI7oLdj26cZzL9qncGeBrwDXSjTWIOkyiL5HXI9JyOg4EPou+t04TW ZuCCGj9nJY5FWmiwv4/W8qazkY0fvOkddR4cpN5fTLGag0dvjXF0lzyC2k2cQeA16EY32eDx cyiX7WymLvsdJoN8r9cRvQ7qHTuAv0TpJrVyMBKa4Yu33UfwXdda6aUSb6UopCeA80pfUEnd uoNo/MQ5VV5XC1uRL2ttYRKmd8gjX+aPiPf7jwG/QY17Jxqcw04kMG+k9jzXPIqs/ib1+2EC glChS5HwqZUngK8VHjvlugkK9dUTewWSMc+jeGPbDNxa6UWlbAH+ENo+lfjxWAGTyMn4Wxr/ 8U3n8QAqpR03Kf5xZBaO0NgFuxEJzNGY7xtBy+nraSyecA/wE6Ld1WthEqW13EnnVPTdhVYH 4wjmMPOB00Lbt1EhUr6a5nR56PliopGncdmLivzd1cA+TOeRpzx7Ig4bkIbWiMDaibIv6qki sgs5yhvR8kaRlhBXYILcKJGgyTYmj4Ty9dT3WQGeSrSG+y8qvaiawLqS6A91fp2TAN2hrkNq /m46R8U1jTGGVgfr/b33IbOgkfNllPovoDEkbBspmTSBLuR6PsNE4fidoGGNIYWkkTzi8yma gzlUfr2MagLrUaL1sc5Bq371sh/4IfIlmN4gQ2NBmBlqd5RPtY9645mC4zcSD9XId5Chc+Kx tiMTvt6bQx8KKQm4l2gnrz9S7cvcj+JhApYDx9Q5mYBbkOa2Y7oXmq5gEKn4cRLow8wFDqKx C3Yu8o3Uw0wqx2zFYQAVw6xnH/2F4w82cPxWsRX5qestLXUEisMLuJoqwm8q6X85RbNwNvDC OicTMIFWfn6DzcJe4VCUjxpX6PSjzk2NCqwFaNGoHutgGSpzUq/ABaXcnE68kIaAIeQ7nq5H aNqMozLpD1P/AsX5FL+jSar4r2BqgXU9RS99BgX0NSLt8yjM/gpkm1todTcZJHReSvzzZhWK wWk0t3AZim4fivm+RchEWdDg8eei6+bgmO8bRIL2SBo3i5vNZpTvt7/O9w+gcyT4njeh0sp1 8WWKgWETxKtCWo2VwFdJLv3Co31HDq2SnUHtWs4w8C60QNNopHcOhUhcQO1CK4i2TyJwNY9W yT+BTMNayKIGDNfSGWltN6PsgHp9datKPue36twPoITU8OTe38jOCmSBVyKnWqelHnjEH/uR e+GZTJ2XmkVC5W0o0DSpc2MShSe8CphHdY0pg/xW5yHrIsl8xieAv0Ua31QX9gCKFP9vijFo 7Twm0GLavCk+03S8p2SfL2pgXwyhrtDBzm6msdXCgKXAv9IZdxCPxsc+dO68E2kas5DwmoGE xBwk0P4dxV4lodmExwQ6jz+BtJc5oePPQD7aVSiHbw3yyyQlMIME7E0osfocdF3NDB1/FqoY 8SZkXu1N8PjNHOuRNlyvq6gPBegG+3uUabp11WKffxHlQoGk/mkoCrVRXoBOoGNqnIfpbCZR nM5aJBQeQTes+WiV6Ci0UjREc86HPCpX8iCKGVqLzM5ZheMejXxuyxI+fj70fATVJ78X5d1t RhftIaHjL6f9/VYBNwF/VXisx+F+LCo1FGhoXwPeTPQ7i81zKWpCOeAjjewsxAJkYlrL6q2R QxrERuRf2kqyGk0txx9DKWjrC/PY1+LjT6LYpceREN/TwuMn+RkuprFVzA+GPvc4FZKd62EW uisEk72P+mtklXISUoGTyIr38PBozcghQft+6tcGB5GmG+zzEWrwhdXi2R9FtnfAKmSHJ8Ea 4Ou4zb0xncY6tJJZ73V7BjKDAy5GJvqU1LoU+R2ikad/Xvu8pmQfimq9lKKj1RjT/jyAqknU Gyx6Qej5fqJKUVVqFVj3o1yhgLOJ31GnGg8jZ1tQmdQY095sAW6n/v6jK1Htq4BrUFWNaalV YE2gfoNB5vow8Ke1zm4aJtGq439Sg0pojEmdB1DNvHq1qz9B2QQU9vFfNKEqxVwUJxE4ye6h sTyrUp6MOqrsp/lOQw8Pj/pGDpVvrjepvA+ZksH+NhAjdSpOOP0e5BgLOIKoWtcojwCfohjl bIxpL/IoHGMNWiirh7NQ/FXA91GxxJqIm//znxQrIGaAvyY5LWsClaD5GvVXqTTGNJe7qFBr vUb6kMwIAnNHUZRAzcQVWGuIln44A/VSS4o9yJ69ks4oDWtMr7EGOdzr4SS0YBfwK2Qe1kxc gTUJfJ5inaxZKDQ/STYBFyGnXqNdU4wxyZBHq4Krid9UI+D/UOxZOEFUljSNDNGExX1omTJJ BlCliFuQkOyktAUPj24ckyjv7yzq4xBkAgb7u5k6ouTrqWGTBz5TeASF2L+9jv1MxTgqufol qtR2Nsa0lDzqWVpv96u3UUzpywOfpbEGH7GYj1TDQFo+jsrhJs0wSrZ+AmtZHh5pjt3Ur5gc TLFlWx6FRNXV67TeKoE7kXc/X9g+EPjfde5rKnagqqc/oti22xjTeu5CZXHq4TVcuPAAAA2z SURBVAKKZaLzqKv29iQmFYchpFkFUnMnahrQDA4DvkLnFDbz8OimkUMm3JOIz1JUhyzY10am KdI3FY30jduFPkS+sD0PxVg0g7WFY/0cJ0kb00ryqH7Y7SgqPS7/l6KAyqOVwdRa/S1C9bEC 6bkFOLyJxzsJtb3fjzUtD49WjCDX93Tis5Jih6w8qva6dMp3TEOjpVhHUaT78wvbs5EgubzB /VbjCbRquBSZiY125jXGTE3QT/RnxE/H+RuiHZ0vokoL+lZSWpF0N83VskBthb5NZ3QW8fDo 1JFDi10XEF+5WUGxMGceFU6op6FshCSK3U8UxvlI2xlA/qyfoYk2g41oxWIxKtofdO2wtmVM cuRRLbxvoXp1tZIF/hk1g80U9vNhVPeqLRhGQWWBNN0HnNmC4x6OWkNtpNhOyb4tD49kxjhy ki8nHqcRtX7uBhbG3EfTeTnRfnLXkkwPw6nIoBiwj1FszGqB5eGRzNgLvI54fQf7UXXiYB85 4DUx3t8y+pBDLZjoBMnVfp+OhWj59C7cgcfDI4kxiSIAnk48Xkv0GryKNu6zeAqKzwomez+w pEXHngO8GOUgOsDUw6OxsQ/VpouTcrcIpd0E+9iNzMPESFryrUfRsCcXthciafvrhI9TiXFk Fv4eCckDUTtwO+KNic8I6vp+I7WXgHkvcg0FfBP4QsLzSpwDUURsIGV3oDCEVpFFeUvvRSqt O0t7eMQbgTl4ErVzPNEUnE3Ul8ozJc2wLfcgiXwu0m5mopZg36U15STySBVdUxhLUY6jg0yN qY39wGUoFa6WYNFBZD4eX9jOoTCGX1R9R5sxG8VchCV20pVJa2EAOAr4B9SaaBz7tjw8phvb gFcgZaMW3kI0QuB3yKfcUZyMnN/Bh9iA0mnSYAlyyP8AO+Q9PKYa48hvdQS1sZxoratRFDDa FJq53LgBSehnI1NsDiqT+mNa38ZrBCVe3ooc8/OBZRRNRJuKxohdwFdROML+aV7bhwK3g4j2 HGrV981mTrCZzCcaAT8BvCzVGSmf6UwUbHonUVXWw6OXxwTq13ACtd3EX0I05uou2jCiPS7P IVp8/hHU5TlthoEXAJ9GqQMWXB69Pp5Aic61+K6WI2sleO8+km2snBp9KBYj7Df6Ke0T/boU eDUqxXw7Rce8/VwevTCC83wvSnJexvT0oY7N4X38B+1zTTfMAmR+hb+od6U6o3KGkWP+M8D1 FGvIe3h0+9gPXAqcSG1C5+0l778bRbl3Fc8humq4lWJEfLuQRYsD5yDn4S+R2uvgU49uG4Fm FbTUOw8lLk/HU4HNof2M0CWmYCkZ4ENEfUW3kUBRrybRhwJe/xL4L9T4cRP2dXl0zxgBrgRe Sm3CajZwU+j9k6gNX9euss8iGlCaR5pMI80wmkm4IOFpKHr3UmTePo5U6bRPOg+PuCOH2mx9 D9Vqr0VYZVGJ4/B+rqfYer5rORqtRgQfeh/wxlRnVBtZ1Ll2Piq58dfI8XgbKhG9GX0WO+s9 2nnsRU2Q/xGt1teqLLwGnd/BfjZTTMVpGWmpcn+BMsEDyb4TxUbdntJ84tKH8qdmoDLNT0Gx K09DJ8FQ4X/BGKR9tUjT/eRQfu02lDbzHyiaPagKOh3HAVdTjLGaRI73LyY+02lIS2BlgC+h HKSAO1D3nSdSmVFjDFIUYHNQ6eYjUSrSSiTEFiPzsq/CAAm0TGgYE5dA+5ksjLHCWI9KPP0Q VWHYRe0lY5aiJOZwxZVvoHitWoRdoqR5YQwDP0E2dFCo/hLgVWjlopPpR8F3gRAbRLb+3MLj 7ML/5xQe+5Awyxbea23M1EMeXTv7kPa0FS0UbUNWzE7iVUzpR92pXkHxGr0BeFFhnz3Hk4nW zpoEPog1DGPSJoNqyoVXxTdRe1J01/JCZF8HX8oI0rKMMenxp0SDp/cCf5LqjNqEDPA+oisZ 22hiiQpjzJScDGwhek1+CFs+f6QP2crhkIB1KATCGNM6VgFrKV6LORS+U0usVk+xgGg/szyK Ll+c5qSM6SEWoiYu4Wvwt3RhnmBSLEN12IMvK4dqSw+lOSljeoC5qIpK2Mq5B/VDMFNwAoob CQutL2OV1Jhm0Y8qh4aF1Qbidc3pac5A7cHC4Q6fJ17LbGPM9AygfN4JitfbLuDsNCfVibyB aKXSCeDjeKXCmKTIAH9PVFjtA96c5qQ6mbcRrYgwAXwUR4Ib0yhZFKoQFlZjKKnf1EkW+ADR AnpjwHuwpmVMvWSAdxC9rsaBv6OLyhynRQY1Qg3fCfYD78RCy5i4ZNC1Ey4VM4HKzdhySYgB 4F8ot7Xfg79kY2olizSrUmH1GbyglTj9wOeILr2OIZ+WNS1jpiYoUR42A3OozNNAivPqamYh oRXWtCZQU1TfIYypzADlq4ETSFjNSnFePUE/5ebhBBJkDi41Jko/5XFWgRlozapFDCBHfFi9 nUR3jHnpTcuYtmIuimAPC6tx5GC3RdJiMijkIRynlUNdbZwwbXqdhZTnBo6h0AUvVKVEFgWX hlc9cqh32lEpzsuYNFmFqi6EhdU+FBTqOKs24I2oXnW4LMZDuAig6T1ORvWswtfCLpxu03ac gZqbllYufSUOezDdTwaVNd5CedUFJzK3KU8hWk8rqBH/AbyCaLqXftQwIlyDPahn5RIxbc4y VLk0fJeZRD3ZDkhxXsY0g6XAd4l2t8mhSqEuvtchLAC+Q/Ruk0OdpU9IcV7GJMlxwC1Eb855 VIPdZY07jD7g/URbiOWB7ajWlpd2TaeSBV6DGqWGz+29KP3G7o8OJYO61G6gfIn3X1BgnTGd xGzgIspDeTahvoFeYOoCngxcQ/RulAduxU5J0zk8FcUYlp7H1+OOzF3HAuArKDUh/GNvQfWB HFBn2pU+4O3AZqLn7gTwdRTVbrqQDAqg20j5XeoSYGV6UzOmIsuRE730fN0MvBWbgD3BsWjZ N7wUnAceRsF3dlqatOkDXoI6oIfP0UlkAh6f2sxMKsxCiaB7KVezf4C1LZMey4H/ptx9MQJ8 BDneTQ+SAc4CVhNdRcyhNJ+3ATNSm53pNQaBtwCPUX4+3g08D5uABjktv0S0D2Kgfl+JVmeM aSbHA5dR7qbYB/wHDgQ1JfShJNHVlJ8021HteNfZMkmzCJUv3kb5zfIupFV5BdtUZQHwT5T7 tvLAfaiUjUvLmkbpB16LEpRLz7NR4J9xuIKpkQzwDCqvJE4AVwOn4/QeE58scBpK0C91qk8C v0N13OyrMrGZDbyLynFbo8i34NVEUysrkK90hPLzaRPqszknrcmZ7uEg4AuocmNpBYidqCvJ YanNzrQ7K1H+307KKyvsBr4MPCm12ZmuJINU9V9SbiYGd8iP45pbpshStFizifLzJYfMwtOw +WeaSB/wKspjt4KTcBvwYeDQtCZoUudgVOZlG5XPkbtReRiv/pmWMQy8A3iU8rtnHgWeXoQF Vy9xCNKyH6PyOfEocCFe/TMpMht4N+pUUuluug/4JnAKzlHsRvrQivLX0UJMpXPgQeB9uP6a aSOWAH8DPEH5SRtUg/w5cC42BbqBPuAc4H+oHLOXQ6vLf4d8Wca0JcPobnoXlQVXDnX2eTde WexEViKz7k6q/773oJvXcEpzNCY2w8DrgT9QHiAYnNhbgIuB56PEV9OeDCJt6juoDlUlQTUO 3IwyIRakM01jGieLzMBLqBwwGIx7kPlwAvZ1tQN9qG7aB5G2XO13G0Fm4XnY1DddRD+q+vCv wHoqx3IFgYR/QFHPq3DeYisZQN/5e4AbUKBwJW1qEjU2+SzwNHyDMV3OEEp8/QXlJW3CYwy4 FnX1PQ7fwZtBH3A0SsG6Gn3n1X6PfcAVqE3cUBqTNSZN+pEg+hgqhVvtYskhzet21J7suSiW x8nX8ckiH9NZwCeA26iuSQW+qUcKrz0Ba7zGAEp6PRclVK+j+l0+vGT+Y1QV9TjstJ+KAeSP eivwQ6qHnpQGeX4V+abmtX7KphLOYWpP5qPyNS9DQmwZ1c3BwPG7BbgR+V6uRYGsO5C/pZfo Qyu0K4FnA88sjMUoyLfaOT+Jcv5+CXwPfYc70fdr2gQLrPZnEbrwzgXOBI5iel9WHmlgq1Hj zduBe4EHkGnZTcwFDgeORCbbyUjjPIDpz+8c+l6uRv7Ea1H7d9OmWGB1FjNRTaVzUezWiSjC vhYBth85+NehoMc7kEB7EPlw9iJNLZf8tBsiizoczUWO7hWo/vkJhceVhf/PYPrzeRLFUd2G BNQV6PsYTX7aphlYYHU2S9Gy+mkoV/Ek4jcrmEBVBTahi3kd6s/4INLStiHTcivFek5JkkUm 8EJkyi1EJvBKJJxWoM+5tPC/uCEE25CWeSNwHXAr+lymA7HA6h4CTeQI4AxUuyvQwOYT/7cO nPuThcccEm7bkb9sK1pBG0fL/ZMUA2P3FvYxp3DcWUjQzEQO8AEkWBejFbv+wvyzSFvM1jnf XUjo3oJ8edeggNwgKdl0OBZY3c1sVJtpJTKfjkf+naPo/FK8I0gYrUYm7p3AQ6i0y0iK8zJN xAKr98iiEIjDUcDkitA4GGk8Q4WRVpxXDmlLu5BGtx6ZqsG4B7gfxa1Zc+ohLLBMmD4ksIYp mmxLQs/DI/AnDRZGPzL9MhS1t6DsyigyJ8cKI/CbBabl5tDzLYXtrch3tp3eC80wVfj/Y8SU CxfzXIAAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAYAAAB5fY51AAAACXBIWXMAABcRAAAXEQHKJvM/ AAAgAElEQVR4nO2dd7gkZZm37+5zzuQ8AyPJmQGGIEMQREQkioTFrIsBw67Kt+r6qQiriKtr Vlxz+ERdFV1zxAQCIoIIGMgDDGlmCEOaPMOcOXNC9/fHr4qu6nBOV6fq8Luv672663R31Xu6 q556nud9QgZjCmSA2cDcYMwHFpQZ84P3TQf6gGlAFpgR7GNGsL8ngHzwmAMGgbHgcTOwrmis B9YGjxuDsTnYhzFk0p6AaTlZoB9YBOwPLAmeLwH2AOYBs5BA6k9pjqNIUG0BNgAPAquA+4PH u4LHUSQITY9ggdXdTAZ2BRYDBwAHB49PQwKpk9kM3AncDtwCLEcCbQ2wI8V5mSZigdU9ZJGA 2gs4GjgSeAawEJgTvJ6EfDDGkBaTC55vpWCybQdGgsdRCibfE8E+ZlAwGcPH/uBxDjIvZwav ZYPRh87LpOdmDtgEPA78A7gO+DNwHzCENbGuwAKrs5kPHAgcBRwBHI4EVJLfNbzQ1wZjNfAA utAfQyZZ6E/aROO1l0kUfGZzkUm6ENgTmaqLgJ2CMZfkgvcxJMD+CvwFuBX5y0wHYoHVWUwG dgeeB5wEPBNd3BP5mvLAMNI0HgJui4z7kDDaFoyxZky8DvqQc3860sr2ApYBByFhvQcwBQm+ ic7nUaSB/R24FLgc+cdsQnYIFljtzyzg2cApwLHoYq1GQK1H/p0bgZuQo/oeJJy6iTnAUmA/ 5KM7FH1HC6hOgN0OXIUE2LVIizRtigVWezITmXinI0G1C+MLqe3IdLsBXXTXIOG0AV2UvUQ/ Mh2XIl/es5Avbx7ynVViFHgUuAT4OfKBbWnqTI3pYKYCxwNfQWZafoKxDvgt8A7g6cgsMuWZ jLSvtwO/Rr66ib7f+4ALgBPQb2NMz9MP7At8CF0gw5S/eHLIv3QH8CXgn5DJ09f6KXc8WbRY cQrwBWQShoGt5b77YRTz9REUt5ZWbJoxqTEdmXu/RoKo0l1+FLgeOA84BBhIY7JdzgDSvs5D ZuAolX+PQeB3wCspRPMb05X0IWfw+SjAsdKFsQ05yv8zeP+kNCbbo0xCzvtz0W+wjfKa1yha XfxvtFppTdd0DRngOOCnFHLryo17gY9iTapdGEC/xYeBu6n8u21DTvoT8CKW6WBmAa9AwYoj lPdLbQR+AbwQO83bmcnAacDP0MprOa1rBJnvr6Lz055MDzETOAtFVJc7sXPojn0ecrj7rtxZ LAXeA6yg8u+7HDgbnQvGtCXz0Em6hvIn8nYUWf18bPJ1A/3AqcDvkTO+nOB6GPnD5qc0R2NK mAy8DUWSFwuqHFoW/xEKYrSg6j76USbC9ykkWZfTqM/C8VwmRWYB/4ZidMo5Yx8FPg/sndYE TctZAnwGaVblzolVwL+jdCJjWkIWeAnKzxuj9G66GfgEOnlNb/JUtOK7mfIa163Ay3E4hGky zwAuplRQhakyn0HVFIwBFU88H50bxefLGHAZyhk1pqHsjNI4NlF6t9wKfBnYJ7XZmXZnb+Bz 6Fwp1ri2oPzRXVKbnekapiKfwxpK75BDwHfRMrcx1bA38C107hSfT4+gRPbxKkoYU5FDgT9S mkIzikq4nIB9ECY5faiu2TWUnltjwNWocqzj80xVzAL+i/JpNCuBM3F+n6mfAeBfUd2ycuk+ H8ER82YcssAxwM2UOtU3I+fpzqnNznQrOwEfo9Q/OoZWE4/DmrwpYg6qM1UcsZwD/oRUdGOa ydOBKyi9WW4HvoqqqBrD0Uiriq7e5FDg5ztxUrJpHZPRIs8jlJ6PtyFty76tHmUKyvPaSqlT /SIcpmDSYy9UsqbYKb8NeD9O8ek59kUrgMXq9xpUTdI5fyZtBlA0/AOUX0ncP72pmVbyesrn ev0Ox1SZ9mNPVEq7XK7qG7GJ2LXMRhHFxcX0NgDvxs0FTPvSB7wL9ZosLhr4dZxM3XUsQisw xWkRt+FcLtM5HI4WiIq1rauQJmY6nAxwMqVF9XagMIZZ6U3NmJqYAXwWncPRVcRHUBlnm4gd Shap0VsoDQJ9Ew7GM51LFvgXSoNNt6LyzT63O4zZwIWUr7V9WHrTMqahHEz53gHfx4GmHcNO qM5QNGRhDK207JrivIxpBk9BnZei53sOuBJYmOK8TBUsA24hfrcZBD6IY6tM9zKAGu8Wp5bd jhq9mjbkSNSNN/qDbQTOQDa/Md1MBvXB3EBpMPQxKc7LlOEMJJyiP9QDKE/QmF7iSGA18Wth E/C6FOdkArKoPtV24vb7zcABKc7LmDTZH7iBuDN+O/BWbG2kRgY4h9Jys5fjulXGLAAuoTT+ 8Dwcq9Vy+oH3EQ+eG0OhDK7SaIyYhVJ3oiuIw3gRqqX0ob5/0ZzAMeACXLrYmGL6UQ5ttFTN KPBpnD/bdCajdknRL38M+FTwmjGmlEnoJl8stL6Ma2s1jT4krKLq7Qj6IZyKYMz4ZFBji2Hi C1RfxppWw+mn9A4xjCqGWlgZUx1ZtFAV9f2G5qF9Wg0igxzsUZ/VMF7tMKYWMqhXQXR1fRQ5 4n091Um5O8II0qz85RpTG2FIUNQ8DJUAx2nVwZnE7wRj2GdlTCPIIp9W1M2yAwWXmho4g3gE e7gaaGFlTGPIAB8nLrSGUN8Dk4AjiecGhnFWDl0wprFMQiuF0dX3zThhumqWUVp14UIcFGpM s+hHEfHRNJ6HUYFAMw47Ea9nlUO5gU63Maa5zAQuJi60bsdFACsyG1UKjWpWN+NEZmNaxQLg H8SvwStxueUSssjsi9rRD+ASMca0mv2AVcStnB/gxa4nyaDuNsWVQl18z5h0OJLSyqWOfQw4 mXgrrkEU0mCMSY/TideI3wo8P9UZtQGLUM3paPjCB3G0rTFpk0GR71E3zSP0cIfp2cTbx+dQ Ky4nYRrTHvQDPyd+jV5Njzrhv0J8CXU57htoTLvxFEpb532DHvNnvZ549YXNuCOzMe3KQcQz T0aAN6U6oxayL4qijSZc9sw/b0yH8jrihQgeowfCjqYAfySuXn4Jx3gY0+5kUaG/6LX7Z7q8 xPK5xFcdbkOdPdIki5Kqp7VweGHBdCIzgJuIr+p/gBb6s1rpODsa5SrNCLY3AqcCf23hHMqx CHg5cCj6EZpJBsWzXAz8Fi06GNNJHAZcCswPtgdRfNaVqc2oCcxBeYFRdfLdqc6owMHAL1Dt re3oB2jWGEJxZ/+BzWDTubyT+LW8HJiX6owaSBb5qaIhDL+jfTp1PB1pO1FTtZljAwrIs8Ay nUofcBHxfMOv0SXn9DHEQ/zXAEtTnVGcpwO/oXUCax3wXrrkxzU9yxLgfgrn9XbghGYftNkp MLOAL1JYSRgDzgbuafJxjTHNZRVwFrqmQREAX6TJUfDNFlhnAQcGz/PI9Pp5k49pjGkNv6Zg GgLsj7rxdGQU/KHAExRUxkeBfVKdUXlsEhpTO0uIB4JvA57ZrIM1S8OaioLMpgfbeeCTwN1N Op4xJh1WAR+lEKIzDfhM8NhwmiWw3kC868bVqOuNMab7+CbKYAl5NvDmlOaSmJ2J17jaDBye 6ozGxyahMfVzCPEE6cdoQvWVZmhY7yM+0QuAvzfhOMaY9uFm1N8wZGfg/bS5A/4ZwCYKUnYl 7d/1xhqWMY1hAfJTh+f6FlQfvmE0UsPKAh+m0ENwDPgE8HgDj2GMaV/WAR+jEJs1E/gIDbw5 N1JgvQg1lAj5G/CdBu7fGNP+/AD4S2T7eFRcoCE0SmDNQmUmwv3tAP4TGG7Q/ptNK+3strbp jamTEXTtDwXbWeTLmtOInTdKYL0KlVEF2a4/Aa5q0L5bQR4J16EWjFBdNqZb+QvwfQoR8E9D FUvrphF3+8nACmBxsP0EinLvlHzBhShmbCmFL7iZbEfm8nUtOp4xabAErRyGBTofQuXRB+vZ aSNKvJxJQViB/FadIqxAjsKLaV25mzwymS2sTDezCgWUnhVs746CST+b2oxQ0a67iC/Zt2O+ oDGm9eyFogRC+XAfsFOaEzqbeJPFz6Q5GWNM2/EJ4jLivWlNZCalKTi7pzUZY0xb8hRUZTda taUhK4ZJOYt42eNPpDEJY0zb8yEKciIHvKfVE5gF3Epcai5p9SSMMR3BU4nXzLqDFmtZryBu l36+lQdvMBnUJ3BKi8Zk2qcBhzGt4nziMuO1teykljisDHANqnkDimx9GnBvLRNoA+ahBOg9 WnS8Hagt0nIc2mB6h6eixOjJwfY/gCNoQW/O45CQCtW7HzX7gE3mEOBXqLTrNhT42qyxDZnP 5+JqDab3+A4FuTECnNTsA/YBP40cdDvq6NzJuC+hMa3hCHTTDq+Fi0joHkmaS7g/ai8fcg1w fcJ9tCOtNM1CO96YXuMG4E+R7ZOAZUl2kFRgvZZ4Y4kvINXOGGMmYhTJjPCGPRV4fZIdJBFY 04FXRrbvBS5NcjBjTM/zR+DOyPbpFBKkJySJwDoN2C14ngcuxNqVMSYZo8C3KGhZTwFeUO2H qxVY/cBrKDiKN+MOzsaY2rgILT6BZNBrqdL5Xq3A2gt4bmT7StwU1RhTG/cBf4hsHwvsV80H qxVYrybeyfVCvNJljKmdb0eeT0EyZkKqEVhTkTkYch9wWfXzMsaYEq5EtfRCXk0hAqEi1Qis ZxFPW/kRhQLzxhhTC8Oow07IrsBRE32oGoH1cpQcDKrH/LPEUzPGmFIuQilrIBlz+kQfmEhg zQROiWzfBdxe09SMMSbOHaiBTciJFBoxl2UigXUEsGdk+xc49soY0xhGgR9HthcxQW7yRAIr qqKNIRXOGGMaxa+IK0EvG+/N4wmsWcTNwX/g2CtjTGNZjfp0hpwEzK/05vEE1rOBXYLneeDX dE7reWNMZzCCZEsY17kQeE6lN48nsE6hEC6/HTUbNcaYRnMxqpMFSv+rWNivksCajMLlQ+7H q4PGmOZwJ7Aysn0sin4voZLA2p14Ya0r8OqgMaY5jAGXR7b3AxaXe2MlgfU84tnTlzRkWsYY U55LKPix+pAMKqGSwIrakOuJe/GNMabR3ASsjWyfUu5N5QTWfOCZke3rgY2Nm5cxxpSwCbg2 sn0osHPxm8oJrAPR0mLI5cjGNMaYZpFDsiY0C3dCLfhilBNYRxEPZ7i6GbMzxpgirkYFFkB+ rJJ4rGKBlUX5gyEbiBeMN8aYZnE3sC6yfQRFMqpYYE0GDo9s30D3177KAJOCx1YwiYTNI43p EYaJL/AdhgqIPknxhbMXcf/VtXQ/m4G/UuhG20wywFbgnhYcy5hO5Hrgn4Pn84F90AoiUCqw jqagaeRRZ+duZzXwKQpFCptNHmmtuRYdz5hO4hp0jYRy6BgiAquY71LQNNZSZlnRGGOayHzg EQpy6EfRF6Ma1mTgGZHt2yn0Dmt3WuV/6kVsuppWsglYjhqsguKxpqKIhZjA2pW4/+pGVBGw XZmCpPEcVMrZNIdBdBJtRP43Y5rJGKq9d2KwvRPKbb4H4gJrMbr4QXfVinZjGzAdOBV4C7A/ 1fdXNMnJA48C30Mug7Xjv92YurmFgh9rNrCEQGBFeRsFu3GIeHpOO5EBXoc0wBEKc/Zo3hgD HgI+TryhrjHN4FBkAobn39nhC1HN5ODI8yHKSLQ2YSHwQjRfxzO1hiywG3AacCSKQjamWdxD 4LMKODB8ko08HhB5w0O0Z8JzFpmuu2IzMA32Rh16rWWZZrIVhRuFLCO43sOLvh94WuQNt7Vk WrUxjdbFTJk401An8EOxdmuaS1QG7YcyRJ4UWIuINzBsZ4Fl0mUR8iHOSHsipqu5NfJ8OtLu nxRY+xe92QLLVGI6yqI/EGtZpnksL9reHwoCa0nkhRxwXytmZDqWXZGWNW5bcWPqYCXxONDF EDcJQ8IgQWMqMR14LvIteMXQNIMtxDNtFkN5DWsthR5hxpQjg8JLzmCcLr3G1ME24PHI9mKQ wMoAe0ResMAy1TAVZRvsg0NMTOMZJJ5VsRvQl0V+iHmRF1bjGu5mYjIoz+uVwaMxjSRHPBZr LjA3GzyZFXnhgRZOynQ201DWwVKsZZnGc3/k+SxgTiiwwtWePF4hNNUTalkvoVAOxJhGsZJC eaNZwPwscpqG8TR54LEUJmY6l8nAS9GKoTGN5DEKlXmzwIIssCDyhjE6p2ifaQ8ywC4oMXqX lOdiuosNxP3pOxULrByOwTLJGQBeTjyB3ph62US898F8CyzTCLIo+v1ErGWZxrGeuMAqaxJu aumUTLfQh3xZh6Y9EdM1bCaenlMisLYCO1o6JdMtZFCK1/E4Lss0hmKLb0G4ShiyvrXzMV1G P/AC2re8tuk8oq3rF4SR7iH2X5l6yKK6RcdhLcs0hmjUwrwsyrwP2Y4x9ZEFTkZdxI2pl+HI 8/4s8fIgIy2ejOlO9ke+LNfLMvUSlUmTssQbCljDMo2gDzg2GO7KbephKPJ8UpZ40mo7d3o2 nUMGaVknEk+sNyYp0Uj3/izxZgKDLZ6M6V76kB/rhLQnYjqaqEyaGhbwC3EdLNNInoaK/LmP oamVfOR5pljDeqLFkzHdSwb1kjsCaVmu/W5qIVr9eLqLrplmsy/wIlRS2Zi6yBLXqjqhOWYG V7fsJCahbtEn4D6GJjnRONFt/cRtxE5Q28dQ+MVm4pncpn1ZiOpl/QGvRJtkRH3s+X6kYYVL z+3uHM0B/wDeiOaaH//tpk3IoBvM0ERvNKaIqCthez9xLaUTNKwngLvSnoQxpiVE3Qij/cTj HOrVsBzVbIwZj6RW0ZTI8+F+iiJJa5hAH3LWz0UOVptpxphyZJAPcyNqRZ9jYnkxEHk+XK+G tRQ5Uw8DZtIZJqUxJj1yqFDoCuBXwO2Mv3gWFVij/cgZGjInwYEXAW8BXkO8aqkxxkzEE8Ce wGeB5eO8L1pgdEM/RRX9EhzwJcFwoTZjTFJmIutsPfAf47wvKpPWZYkLrJnID1UNJ+Buv8aY 2pmNck0rEXamD1lfLLD6it4wHpOxz8oYUzvhgl0lZhNfCFxbLLCKJdp43Ic8/cYYUwvbgJvG eX0e8TS8dVninXKSCKzrgMcSTc8YY0QeeBj433HeM4e4wFqfBdZG/pDEJPwzsAbHXRljkjMI XI3ySysxj7jbaV0WtdEJg0czVO9IfxC4BzdeNcYk517gQuL1ropZSEHDyhH4sDZQiMXKoNiI asgB1wOrE07UGNPbbAAuBW5m/CrHSyik+20hMAk3EXeeL6ryoHngr8DKRFM1xvQyeRTd/kMm ts4WR55vATZlkXYV7a66iOrDFVYDd+B+hsaY6ngM+A1wJ+P7v7PEBdZGYGMWmXYPRl7YiXiV v/EYBW4BHqjy/caY3iWPwhh+RryjczmmAjtHttcAY6FDa3XkhSQCKw/8HSUyerXQGDMeq5B2 tZqJ5cUM4gJrNRQ88PdHXphL9UnQeRRAeicufWuMqUwehUL9huqUm1korCFkNRQEVtRxngX2 SjCRUeA24kLPGGNC8igE6ncoWLQaFhNPy1kNBYG1oujNyxJO6BYktIwxpphR4DLgj1TfOObA ou0VUBBYq4jXxToo4YTuQgLLXWyMMcXcClxCPA1wIqIyaBBpaE8KrFHkhwoplm4TMYTCG5yq Y4wJyaNYq18Bf0n42agMWkGwqhgNe7898oY9SFZ9FCTwbsJaljFG5FFbviuIW3ATMQNFuYcs J5Ar0UzoWyLPp6B67Um4Fwms8ULtjTG9QR6VQf4545eQKcfexPsRPukfjwqsJ6UYqjq6X8KD DCItbR02C43pdfLAVcCVqFN7EvZFBULD/ZQVWPejvEJQwuHBNUzyHuBvWGAZ08vkUe7fj4m7 mqrlIOJJz6vCF6ICaw3weGT7UJL3KVyJbFYLLGN6l1Hg90h5SZpn3AccHtleCzwUbkQF1g4k bEKWUX0xv5AtaAlzAxZaxvQieRS+8H1qq+Qyh3gc6I1Eeqdmi958XeT5ApI73kGJ0DfQfc73 POkK4XY5vm9EZjx2ABchxaUWGbCEeBHR66MvFpt8f448zwBHA9cmPOD9wX6OL7P/TiKPvvBh pNZuDf4+HTkEB9D/lyn76cYwFhx7BFVmHEbduacEx5/U5OPng2MPo1i7weCY04LHSZTe9Ezv kgceRdrVQxO8txLPIX5OXx19sVig3Ifq1SwMtp9VwwE3Ien6BM2/oJpFGPB2PXAx+n/CIofT 0Qrq85FAD5dfG/l/5tGK7d0o/+pa5F8cQ9/pHsBzgznMD47d6OOD/AeXB2MVElx9wTGPQI10 96ZwHnXib20axzbkaF9B7fGYUZmzgdK0wRhZ4LcUVP8HKSwvJuFAVAJ1hLgp0QljDCVonosW HmaW+f+mAQcAZ6MvdKyBx88hTebrwImoxEaxFtOPCi2ejoTJjuBzuQZ+B1cAr0Eq+kCZ72AB cAzwNVRcLZx72r+fRzpjDJU8PoTab1wDFErP5JEMmVCDf3/kA9uoLbxhPvA+dOGl/UUmGTkk rM4K/oeJmA28CTkXGyG0cihm5RvA05j4hx9AHbivRCZbI76DURQ/cyoT36wywD7ABehuaIHV u2MT8F5UFqZWDkCWWbjPj1TzoROIa0Zvr+HAGeB5KIi0k07iLcDnkPZQLbOQNra1AccfRhrT YQmO3w+chmLg6v2ucyhj4QzKa1WV2A+Zzp2oUXvUP0aQ33pf6nMLvJnCOTwKnFL8hnLq1q3E 47FOrPC+8cij1cLb6ZzCfnm0YPAt4jXuJ2ILMqNvpP7/dRD4Jkokr5ZR5OO6jPFbJlVDDiWq Xkmy+Jn7UApGrY5W09msB76HXEj5GveRRUpOKPDWUialp5wgWofKHoccSfJ4rHA/VzBx7eZ2 YTuywVeS3GG4BlVSrKdH4xi64K8neSpDmLOVRNAWk0cC809UX2QtZASVD7m3juObzmQY3ax/ QyReqgZmA0dFtm+mTGf5SprTpZHnC4hHnlbLRnTn30btUreVbERfUi1a0pbgs/V0D9qBtNta tKQRpJU9Ucfx8+gO+WiNn18bfDZU6U1vsAa1m19X534OIV7D/ffl3lRJYF1O/MI9tYYJ5JDH /246I4h0B7roarnYxpBaXE9pndHg+LWalWGcVK3k0ElXq5aYQxreUB1zMJ3FEEq/uYz6LalT KZiDuWCfJVQSWA8ST1o8kWRO2JBN1JatnQZZqu/HWOnz9ZAJjl+r07IRsVj1HD/8vANJe4f7 gO+SrNZVOfqAkyLbd1Gho3ylk2sHWtoOWYSW2ZOyCUWq1usMbgVTUUBmLRfcJGB36hN4A8BT qe3GAFqtLBczVi1ZYBeqb/FWTD9qEVdL3J7pPAZRFdGrqH+xaR9gz8j2VVRQcsa7OC+NTGQa WjpPyihyxN5P+5uFc5GvbkoNn52Pot4n1XH8ySjmLUlIRcgU4NnUL7B2Q4GiSVOqwnisPWh8 1L1pP/LI3/oDGmM9nYqqjILkRFn/FYwvsK6l4KXPAC+gtgtyC1p5qsch3AomocC1w0mm5WTQ 3eE06tMuMqgP2ykkX5Wdh9Jk5k30xgnoRydP0qT3KcALid8lTfeyFV3Tf6P+kugDwIso3OQe B66pdWdfpxAcNkryKqThhJ5HIUajnccOtDy7lOq1hD3R99SIqP4xlOpzMtULzdnAvwOP0JjA 0Y3AOVSvrQ0Ax6HSRJ0UJOxR+zlyOfEie/WwFDnsw/1/t56dnUx8sufWuJ/dgb/S2Jy7Zv0Y m1Hw6GLGN42yyLf3MXSRNyqXbxhFDR/D+OZpBgmrV1NYiW3EdzCGEp3PDPY/3kk5BXgm8Aca lxrk0b4jhzSgc6nPXxvlnKJjPL+enc1CgZThzm6gNqfwLODTFJJk23nkkBn7e+CVyKc0FZl7 k9FFOhd9sb+gkH7UKIGVQ0LrZuA9yKdUfPzpKG7l80i4NPpGkEOZCl9FAmlGcNxwDuECxVlI s9rRBr+bR/NHDvgJqtDRCPpQoHS4/weZoFtXNSrdBcC/Bc8HUTTqzQknNoCWLb9EvH1POzOC llbvRS3MHkZf6kKUM7UP0sKmBn9vtKM5hwIx7wuOvwppMbOBvYD9g8c5TTh2yObg+HcjU3UL 8vU9Fa0a741WFht1tzXtSx4FiX4I+DaNWUQ7ABUNDd0P30LFBPL17PS5FGzMHPDhGvezCzJ1 OsnPEWpNW5HAehhdxK00bcMKDo+hE2Yd+j1a+T2OBMd9OJjHYIf9jh71j1FURSRaDbRe3kfh PBqhTLJzLUxFd/dw4ndT22rYDGTCbCKdL9zDw6O2kUNW1YtpHJNQOll4jAeoYqGnmiDJ7SgT O2QpinxPyg7knK0358gY0zrySKP/CcpaaRTHILdGyI8olCGvSLVR3cUBYv9a/byeZAQ57UNf kDGm/cmhuKhLqT8FJ8obIs93EFeKKlKtwLqHuHQ9gdo66oQVESaUpMaY1MmjMIbvocj2RrEE xWaGXI0WliakWoE1ikpIhCsDc4CXVju7ov38GQU5GmPamxFUZ+1K6iudVMyLKZQgzyGB2Mj9 A3KaR6PVV1BbG689kC/Lq0weHu07RlHIQS218MajD7gtcpxHSFAHPkllgieQYyxkH+JqXbWs BZZTX+0mY0zzCAXJF2msKQjqV3pAZPunFFroTUjSUir/S0HQZIB3kFzLCmuQP5jwc8aY1rAN mWlXUl/Z72L6kMwIA523oyDUqkkqsG4nXvrhGJS6kYQxpGrejyS5MaZ9GEbpMhdSe7nsShyG FuxCrkDmYdUkFVhjwFco1MmaiioFJCGPQhvuopAwa4xJnxy6Lj+KUrIazVtQbT2QDInKkqaR IZ6wOERt+YFnII3NzncPj3RHmIK2GngVBaHSSPZAJmB4zBuoIQe1lnLAeeALwSMoxP5tNezn bzRHihtjkpFBi2HfRC6fZiyIvZVCSl8eOfRbVoV4NlrpC6XlwyiDPwmTgPOJF+/y8PBo7Qhr wH0N2JXmsBvquRkecwW19TqtucPJZuTdzwfbuwD/J+E+RoFbkPPdGJMOO5Dz+1PyTmYAAA2i SURBVPM0L6D7DUhogWTGd1DWS0uZRSEvMI+EWBIJHTYu+BX2Y3l4tHrkKJQEP4Tm1VTbGfWr DI/7GBMU6RuPenrIbUF2aD7YnoliLKolj6qZ3kn7d9QxptvIo3jI/0bBofnx314z/5eCgMqj lcFNTTrWhMxH9bFC6bmO5OVTw5rkad9xPDx6YeRQ3t6VqDhnMxvfLkHJ0+GxVxJvR5+Yeie7 HtX9DplP8ris5TQ+/N8YU0oosK4GPoWEVr1tusbjzai5bsjXkABLleKKpFtJpmVNAf4TmYX2 ZXl4NGeEPqtLUT5fMzUrUL+DzZHjP0ihWWrNNGLS21FHnHywPR04j+qDwoYoNHkwxjSePAof ugz4OGoF30zNKgu8l0LJ4zzwWdqomfIcCo67PBJCxyb4/DLglyjUIe07kYdHt4zQYtkA/Bg4 lNZwFPHGwndSf1fyhvNy4t1krqH6HoZTgQ/g/nYeHo0cYePTL6HWdM0KXYjSj3xj0Tm8ugXH TUwfUjnDiY6SrPb7S1A0rP1YHh71jzG0KvdhFNjdKs5Aq5DhPK6kjftWHoHis8LJ3kN8lWA8 DkadlNu9nb2HRzuOaOfxIeSiOYMaU2BqZD5KuwnntBWZhw2j0SsFf0VF/kL2Bt5Z5WdXoSoQ zXQGGtPtbEYlyN+K6rG3MgXmbcj0DPkhCk5ta3ZBOUmhlN0EPL3Kz56KbG6bhR4eycYoakb6 SWBPauu3UA8HEk/BeRzYvcVzqJl3EDftrqC6btHLgN8Rt4E9PDwqjxwKLboeOJ3qXTCNZBJw SWROY8A5KcyjZqahaNroP1BNBPwMZEJGl0Q9PDzKjxG0UPU5lMA8hXQ4k7iCch2Kx+woDkfF 7MN/4hFgryo+dzRy3Nn57uFRfoRa1eXAKyiUbkmDRcRrXW0HjmzWwZq53PgIkvjPQfEf01GZ 1F8yvmN9FK02PIPW2+HGtDM5dH3cjqoefAU1Jk6r+kEf8P+QgMoE8/ssqnfVkcwmHgE/Crxs gs/0AcehCg7Wsjw8NHKopPjn0OJUK8MVKvFC4v7mO2jDiPakHEe8+PwDaBVjPGajXKRoTJeH R6+NHLppr0ZVUV5OOk71cixC8wrnOkRtjZXbjj70ZUdDFX7NxObovsBvUdJmNCjOw6ObR3iu jyIr49vAG5GfqhWpNdXQhzo2R+f8P7RxRHtS5qKGidEf5l0TfGYAlcG4Doc5ePTO2A7ciG7y r6J9NKoobyM+5zuR37mrOI74quF6tJI4HlPQj3YrhXpZ1rQ8um2MopW2q4AvAy9GPROaXbOq Fg5BLcHCuQ/SJaZgMRng/cQd6TczcVGvKcDrkablag4e3TJy6KZ9M/AT4O0ocLqdV8anAf+g 8D+MoeTqdjFVG85U4gGlebQMOtGdZDLwT6gaxFasZXl03sghf+yjKCzhcpRG81xUT26A9r7w s6iPaPR/upbmdIluK/ZHP1r4Tw8hDWoi+lC+0heRM3KI1p5wHh5Jxw6kRa1GPtyLgHNR3NJc dCPuFEf1q4lfc2vR9dhS0pLobwQuoKD+bkYVSm+Z4HNZZEKeAPwLqqA4J/hbO9+dTHeTR9rT jsh4AtWjuhWZfbeiG/VQ8N5Oam23DPnXwhirMeR4v6DVE0nrIs+gDhpnRv52K3Ay+lEnYhJy Sh6MHJTHAwvQHWsSumtlg+NYkJlaKKcxjZUZI6iEyyoU2LkSuAu4F8URhoIsXOnuNHYGfk+8 4sqFqJtzy/+fNC/mOajr89HBPPJIZX4F+nGrYQAJrjlI+i9EqvY0JLza3S9g2pcwFirs4zeG BM82pCUNBuOJ4HEHEk7DwevVnsPtTD/wfeCfKVyj1wPPR6Vkeo49idfOGgPeh4WMMWmTAd5N fFX/cWCfNCfVDpyGVv7CL2UQaVnGmPR4KdIew+tyG3K/9DwZ4D3EfQUbaGKJCmPMuBwOrCN+ Tb4fWz5P0ods5Wh81WoUAmGMaR1L0eJBeC3mUN5gOwe0psJc4v3M8sANaPXPGNN85qFGMtFr 8M90YZ5go1iIooDDLyuHakXPSnNSxvQAM1AVlaiVswLYNc1JdQIHAWuIC62vY5XUmGbRjyqH RoXVI8BhaU6qkzgGlX2Nhjt8BQWFGmMaxwDK5x2lcL1tQdkkJgGvI16pdBT4BF6pMKZRZID/ Ii6shoA3pTmpTuatxEvKjAIfoT3rBBnTSWRRqEJUWA2jnqKmRrLAeeiLjH6p52BNy5hayaD6 W9HragT4AJ1TPaJtyQAfJH4n2IEarlpoGZOMDLp2oqViRoGPYsulYQwAn6bU1j4Hf8nGVEsW aVbFwuoLeEGr4fSjetfRpddh5NOypmXM+IQlyqNmYA6VeRpIcV5dzVQktKKa1ijwcXyHMKYS A5SuBo4iYTU1xXn1BP2UmoejSJA5uNSYOP2UxlmFZqA1qxYxgBzxUfV2DN0xZqY3LWPaihko gj0qrEaQg90WSYvJoJCHaJxWDrgYJ0wbM4/S3MBhFLrghaqUyKLg0uiqRw71TtsvxXkZkyZL UdWFqLAaQkGhjrNqA16POu9Ey2KswkUATe9xOKpnFb0WtuB0m7bjGOBhSiuXno7DHkz3k0Fl jddRWnXBicxtysHE62mFNeLPwyuIpnvpRw0jojXYw3pWLhHT5ixElUujd5kx4OfAU1KclzHN YGfgx8S72+RQpVAX3+sQ5gI/IH63yaHO0gelOC9jGsky4EbiN+c8qsHussYdRh9wLvEWYnnU pfd1eGnXdC5Z4NXAeuLn9jaUfmP3R4eSQV1qH6F0iffTKLDOmE5iGnA+paE8j6O+gV5g6gL2 BK4mfjfKAzdhp6TpHA5BMYbF5/G1uCNz1zEX+AZKTYj+2OtQfSAH1Jl2pQ94G7CW+Lk7Cnwb RbWbLiSDAugeo/QudRGwJL2pGVOWRciJXny+rgXejE3AnuAAtOwbXQrOA/ej4Ds7LU3a9AEv RB3Qo+foGDIBD0xtZiYVpqJE0G2Uqtk/w9qWSY9FwA8pdV8MAh9GjnfTg2SA44HlxFcRcyjN 563A5NRmZ3qNScCZwEOUno93As/DJqBBTsuvEe+DGKrfl6PVGWOayYHAJZS6KYaA/8GBoKaI PpQkupzSk2Yjqh3vOlum0cxH5Ys3UHqzvANpVV7BNhWZC3yMUt9WHrgblbJxaVlTL/3AGShB ufg82w58EocrmCrJAM+k/EriKHAVcDRO7zHJyQJHoQT9Yqf6GHAdquNmX5VJzDTgXZSP29qO fAteTTTVshj5SgcpPZ8eR302p6c1OdM97Ap8FVVuLK4AsRl1JdkrtdmZdmcJyv/bTGllha3A 14HdU5ud6UoySFX/A6VmYniH/ASuuWUK7IwWax6n9HzJIbPwKGz+mSbSB7yC0tit8CTcAHwI eGpaEzSpsxsq87KB8ufInag8jFf/TMuYA7wdeJDSu2ceBZ6ejwVXL7EH0rIfovw58SBwFl79 MykyDTgbdSopdzcdAr4DHIFzFLuRPrSi/G20EFPuHFgJvAfXXzNtxE7Ae4FHKT1pw2qQvwNO wqZAN9AHnAj8hvIxezm0uvwB5Msypi2Zg+6md1BecOVQZ5+z8cpiJ7IEmXW3Ufn3XYFuXnNS mqMxiZkDvBb4O6UBguGJvQ74EXAySnw17ckkpE39ANWhKieoRoAbUCbE3HSmaUz9ZJEZeBHl AwbDsQKZDwdhX1c70Ifqpr0PacuVfrdBZBaegk1900X0o6oPnwPWUD6WKwwk/DuKel6K8xZb yQD6zs8BrkeBwuW0qTHU2OSLwNPxDcZ0ObNQ4uvvKS1pEx3DwDWoq+8yfAdvBn3A/igF6yr0 nVf6PYaAy1CbuFlpTNaYNOlHgujjqBRupYslhzSvW1B7sueiWB4nXycni3xMxwOfAm6msiYV +qYeCN57ENZ4jQGU9HoSSqheTeW7fHTJ/JeoKuoy7LQfjwHkj3oz8HMqh54UB3l+E/mmZrZ+ yqYczmFqT2aj8jUvQ0JsIZXNwdDxuw74G/K9XIMCWTchf0sv0YdWaJcAzwGeFYwFKMi30jk/ hnL+/gD8BH2Hm9H3a9oEC6z2Zz668E4CjgX2Y2JfVh5pYMtR481bgLuAe5Fp2U3MAPYG9kUm 2+FI43wKE5/fOfS9XIX8ideg9u+mTbHA6iymoJpKJ6HYrUNRhH01AmwHcvCvRkGPtyKBthL5 cLYhTS3X+GnXRRZ1OJqBHN2LUf3zg4LHJcHrk5n4fB5DcVQ3IwF1Gfo+tjd+2qYZWGB1Njuj ZfWjUK7iYSRvVjCKqgo8ji7m1ag/40qkpW1ApuV6CvWcGkkWmcDzkCk3D5nAS5BwWoz+z52D 15KGEGxAWubfgL8AN6H/y3QgFljdQ6iJ7AMcg2p3hRrYbJL/1qFzfyx4zCHhthH5y9ajFbQR tNw/RiEwdluwj+nBcaciQTMFOcAHkGBdgFbs+oP5Z5G2mK1xvluQ0L0R+fKuRgG5YVKy6XAs sLqbaag20xJkPh2I/Dv70fmleAeRMFqOTNzbgFWotMtgivMyTcQCq/fIohCIvVHA5OLI2A1p PLOCkVacVw5pS1uQRrcGmarhWAHcg+LWrDn1EBZYJkofElhzKJhsO0WeR0foT5oUjH5k+mUo aG9h2ZXtyJwcDkboNwtNy7WR5+uC7fXId7aR3gvNMBX4/3d615xGyfQQAAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAYAAAB5fY51AAAACXBIWXMAAA7EAAAOxAGVKw4b AAAAGXRFWHRTb2Z0d2FyZQB3d3cuaW5rc2NhcGUub3Jnm+48GgAAACV0RVh0ZGF0ZTpjcmVh dGUAMjAxOS0wOS0xN1QxNTo1OToxMCswMDowMLHGZpcAAAAldEVYdGRhdGU6bW9kaWZ5ADIw MTktMDktMTdUMTU6NTk6MTArMDA6MDDAm94rAAANGUlEQVR4nO3dW4ycZRnA8f9OT9gDUGgl pVBaCpV6KAc5KgZPiHggCorRaNQLD4lo1BhFLrzRGI3GA4kXmigSD/FCNBCDkURjRUG0gAco WlSsCB5KLUrP3c568ex2d9vd7ezszLzvs/P/Jd9NCd1nv8785/vme78ZkCRJkiRJkiRJkiRJ kiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRNZqD0ALPMImD18LYUWAjMLziPem8/sBvYATwCbAV2 FZ1oFjFYMzMPOBO4DLgSOBdYTERqDtDAfdxvhoAmcJCI11PA/cCPgF8ADw3/udrgk6k9C4Hz gXcDFwOriEBJk2kCjwF3AV8C7iWOxKSueibwDWAP8Wrq5jbdbTfwTeDZSF0yH7gB2E68WpZ+ 0Lvl3prEY+kGYAFSB50C3ATspfwD3W12bfuArwGnInXAKuBWPKpy697WBG4jHmtS25YDGyn/ gHbrj+1O4OloUl7ZmtxxwFeAK/BqqnrjFOB04A7iVFGHMVgTmwtcB7wH95F6ZwBYB/wXuIc4 VdQYPhkndinwRWBJ6UHUdxrAOcDdxCp5jWGwjrQY+DKx3spTQZWwEFgD3IKr4sdplB6gQq8G LsRYqZwB4ALgVaUHqY3BGm8u8C7iJmappEXErV9zSw9SE48ixjsf+BXuF9VhiDjSurf0ILXw CGtUA3gDxkr1GACuxefpIe6IUUuBi0oPIR3mYuKxKQzWWCcBzyo9hHSYZ+Hq90MM1qjV+Eqm +pwAnFZ6iFoYrFFn4PtXqs8A8am2wmCNtaL0ANIkfGwOM1ijvA1HtTq29AC1MFij3BeqlY/N Ye6IUX4Vk2q1s/QAtTBYo7aXHkCaxBOlB6iFwRq1pfQA0iQeLj1ALQzWqL/i98SpPruIx6Yw WGP9E4+yVJ8txGNTGKyxtuFd8arPJuKxKQzWWAeA7xMf6SHVYIh4TA6WHqQW3ooy3iLgAeLe LfeNShoiPtP92bjk5hCPsMbbBdyIr2gqb5D4IhRjNYbBOtJ3gD+UHkJ97yHisagx/NacI+0E 9gIvA+YVnkX9aQ/wMeDnpQepjcGa2J+Iz8c6u/Ac6k/fBj6LX/F1BN9YntxK4DbgXNxP6o0h 4D7gKuDxwrNUySOsye0k1mVdDhyP0VJ3jVwVfBsuYJ6UwZra48Sbny8Ejis7ima5R4F3AHeW HkT5bSBWHDeJV0I3t05um4Bz0FF5hNWafwO3Ex9VuxavHqozdgO3Am/HT2RQFywhDtu3EAv7 POJym+7WJB47fyG+in4xUpctB24gXhWNllurW5N4sfso8RjSNHnlq30NYBnwfOD1xJqtVfiK qfF2An8Dfg98D9hIfPpCs+RQWRmszpgLnEoEazVwFnAicQo5t9xYM7YSuKTHP/Nu4LEe/8xO GgSeIj7W+I/Eh+9tBf6O96hKXXU1vT9tuqYnv5lS8uZnSWkYLElpGCxJaRgsSWkYLElpGCxJ aRgsSWkYLElpGCxJaRgsSWkYLElpGCxJaRgsSWkYLElpGCxJaRgsSWkYLElpGCxJaRgsSWkY LElpGCxJaRgsSWkYLElpGCxJaWT+VmK1ZxFwPnAucDxTf/v3WT2ZaLw3ABum+O9DwJPA/cAm YFcvhpLUexuAW4Dt9P4bnTu9bQe+Czyno3tIUhVWAr8HmpSPTae2JvA74OQO7idJhS0Avs7s itXYaN00/DtKmgVOA7ZRPi7d2rYBqzq2t1StTrzpPgDMA+Yw+gZuEzgIHOjA36+ZOw1YVnqI LlpG/I5/Kz2IgNEejKxCGGK0B0Mz+YvbDdYAcAZxtWk9sBY4EVhIxGoX8C/gEeJqzr3AP2Yy qGbk+NID9MDS0gP0uRVED84B1gAnEVekG8Bu4iLJn4GHiKu7D7fzQ6YbrDXAS4A3AWcPDzSf yS+NDwF7gKeIaN0M/AR4op1hJVVlGfBCogeXAMcCT2PqHuwnDmj+AHwL+CFxYNMxA8By4Hri KtN+2n+vYQ/wM+Atw7+ceuMqyr/P1O3tqo7tLR3NEuCtwJ3Ec7rdf7P9RFM+QjRmqjWBLbsc uGsGQ020HQBuB9Z1YkAdlcFSp6wDbmNmBy4Tbb8EXjqTwRYAHwf+S3cuhzeBx4G3EW/QqXsM lmZqDnFm9Cjd68H/gE/SxhKVE4AvAPu6MNjh23bgw3ibUDcZLM3EPOBD9OYOiX3AjUSDWrIQ +Bww2IPhRra9wDsxWt1isNSuucA7iOdor/4tB4kDpkWtDPgpOn9+2sq2E3hjKwNq2gyW2vVG 4qper/899wOfZoo34geA1xN3wpd60D0MXND6vlSLDJbacSHxnCz1b/okcA2TROskYDNl7zdr Elcg5k9jp+roDJamaz7xXCzdg81Em4DRpfNzgPcRq9Y7shaiTQPEMorXFpxBUhzZXE75HqwH rmO4VSPBWg+8udBQh1sAfBAXlkqlHAt8gHo+AeMtRKMOBetq4JRi44w3ADwXuLT0IFKfegFw HmWPrsY6lWgUDWKZ/Wuo6/Pd5wDX4jIHqdfmEhffalrM3SDeJlrcAC4ibmquzcXER4ZI6p3V xI3MtVkNXNggDv1qfL9oNXB66SGkPrOGOg8UjgPOGwlWTaeDIxbgFwxIvbaBet5sH6sBPLdB ma9yatUzSg8g9Zmae3BWg/g2lVrVPJs0G9X8DUQrR64S1qrm2aTZqObn3JIGdd8Gc0zpAaQ+ U+P7VyMWNKhncZgkTWWg9oWZDeoufhY1H0V3ynx8rHRCjSsGDhkg7oqu1Q5gY+khZoEVxALh 2ewe/Cq5TriMir8yrfZgSdIhVR/+SdJYBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZL UhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1Ia BktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZL UhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1Ia BktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZL UhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1Ia BktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZL UhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1Ia BktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZL UhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1IaBktSGgZLUhoGS1Ia BktSGgZLUhoGS1IaBktSGgZLUhoGS1Iac0sPcBRbgPeXHkLqI58HnlF6iKkMVbzd08XfW9KR 7qH8837SzVNCSWk0gGbpIaZQ82zSbFTzc+5gA9hdeoop7Co9gNRnqu5BA9hReoopPFl6AKnP 1Pyce7IB/KX0FFP4c+kBpD5TdQ8awAOlp5jEEPBg6SGkPvMA8dyr0YMN4NfAvtKTTOA/wObS Q0h9ZjN1vk20D/hVA7gP2F54mIlsAbaWHkLqM1uJ515ttgP3jZwSbio8zERuB7aVHkLqM/8m nnu12cSYM65rgb1UsJJ1eNtB5bcHSLPYWcTVwtIdGNn2AK8bO+By4GcVDDZELFz7KjBvevtY UofMJ56DTcr3YAjYCCw7fMhXAgcqGO5fROEllbMe+Cfle3AAeMVEAx4D3AwMFhxuL3D9NHaq pO65njgdK9WDg0STjplswNXEm/AlDgWbwPeBE1rdm5K6ailwC+V68CCw5mhDvhh4tMBw9wNr W9mLknpmLbH0qdfR+jvRoqMaAF4+/D/0YsgmcbnyjFaGk9RzZ9K7M68m8BhwJdGiljSAFxH3 FR3s4nCDxNXJc1sdTFIRZxNX67r5HvdBojkvBea0M+R5wI/pfLSaw7/4TcCp7QwmqedWEcsd Bun80dZB4KdEc2ZkEfBeOneKeBD4DbEQzE88lXJpEAvNf0tnDmSaRFuuI1rTsSHPBD5BnMvu a2OwncTnRb8PWNmpwSQVcTLwLuI5vYvp92Af0ZLPAOto8eCl5Te1hjWIw8LnAa8CLiIufS4g zjlHfmiTWPC1H3icOPe9A7gb7w+UZpPlwCXAFcBlwApipfw8xvdgkOjBf4jI/QC4i1iR0PLH Mk83WIdbQKzdOh04EVg4/MN3EjdR/nV4q/lzoiV1RoPowWrg6cDi4T/bDTwBPEL0oMaPs5Ik SZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk9P4P3ZXRuITgrcsAAAAASUVORK5C YII= iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAYAAAB5fY51AAAACXBIWXMAABcRAAAXEQHKJvM/ AAAgAElEQVR4nO2dd5wkRd3/3zM7u3s5c3ekC3BHPDIISEYECYKiiIoKj5EfYEAwgWIGMQEK ZgX1UTCjwqMgSk4i+YAjHxc4uJz2btPM/v74dNndk3amp2c6TL1fr3rt7e1uT3VX9beqvjGD xeKSAcYDE502GZhSpk12fm800AGMArLAGOcaY5zrbQSGnK8FYBOQd76uA1YWtVXACufrGqet c65hsZCJugOWlpMFcsBMYGdgtvPv2cC2wCRgHBJIuYj6OIgE1XpgNbAYeBF4yfn6tPN1EAlC S5tgBVa66Qa2AmYBuwJ7OF93QQIpyawDngKeAB4F5iOBthToi7BfliZiBVZ6yCIBtT1wCHAg sC8wDZjg/LwehpyWR7uYgvPvDbhHts3AgPN1EPfIt9G5xhjcI6P5mnO+TkDHy7HOz7JO60Dz st65WQDWAsuB/wD3AncCzwO92J1YKrACK9lMBnYDDgL2B/ZDAqqecTUv+gqnLQQWoRf9VXQk M/qktYS/e+nC1ZlNREfSacB26Kg6E9jCaROpX/C+igTY/cDdwGNIX2ZJIFZgJYtuYBvg9cDR wGvQyz2crmkI6Ec7jSXA4572PBJGPU7LN6PjDdCBlPuj0a5se2AesDsS1tsCI5DgG24+D6Id 2APATcA/kH7MHiETghVY8Wcc8FrgDcBh6GWtRUCtQvqdh4CHkaL6WSSc0sQEYC6wE9LR7Y2e 0RRqE2BPALcjAXYP2kVaYooVWPFkLDrivQ0Jqi2pLqQ2o6Pbg+iluwsJp9XopWwncujoOBfp 8g5AurxJSHdWiUHgFeBvwB+QDmx9U3tqsSSYkcARwFXomDY0TFsJ3AB8FNgLHYss5elGu6+P AH9Burrhnu/zwA+AI9HYWCxtTw7YEfgiekH6Kf/yFJB+6Ungu8Bx6MjT0fouJ54sMla8AbgC HQmNY2u5Z9+PfL6+jPzWovJNs1giYzQ67v0FCaJKq/wgcB9wAbAn0BlFZ1NOJ9p9XYCOgYNU Ho9NwI3A23G9+S2WVNKBlMGXIgfHSi9GD1KUf9b5/a4oOtumdCHl/afRGPRQfuc1iKyL30DW SrvTtaSGDHA48Dvc2Lpy7TngK9idVFzoRGPxJeAZKo9bD1LSH4k1YlkSzDjgVOSsOEB5vdQa 4I/AiVileZzpBo4Hfo8sr+V2XQPo+P4Okh/2ZGkjxgLnIo/qchO7gFbsC5DC3a7KyWIu8Clg AZXHdz5wHpoLFkssmYQm6VLKT+TNyLP6BOyRLw3kgGOBvyNlfDnB9TLSh02OqI8WSwndwDnI k7xYUBWQWfw65MRoBVX6yKFIhF/hBlmX21Gfi/XnskTIOOBDyEennDL2FeByYE5UHbS0nNnA t9DOqtyceBE4G4UTWSwtIQu8GcXn5SldTdcBl6DJa2lPZiCL7zrK77geA96KdYewNJl9gf+j VFCZUJlvoWwKFgsoeeKlaG4Uz5c8cDOKGbVYQmUqCuNYS+lquQG4Etghst5Z4s4c4DI0V4p3 XOtR/OiWkfXOkhpGIp3DUkpXyF7gF8jMbbHUwhzgZ2juFM+nZSiQvVpGCYulInsD/6I0hGYQ pXA5EquDsNRPB8prdhelcysP3IEyx1r/PEtNjAM+T/kwmheAD2Dj+yyN0wn8D8pbVi7c58tY j3lLFbLAocAjlCrV1yHl6dTIemdJK1sAX6VUP5pH1sTDsTt5SxETUJ6pYo/lAnAb2qJbLM1k L+CflC6Wm4HvoyyqFguHoF2V13pTQI6fH8MGJVtaRzcy8iyjdD4+jnZbVrfVpoxAcV4bKFWq X491U7BEx/YoZU2xUr4H+Bw2xKft2BFZAIu330tRNkkb82eJmk7kDb+I8pbEnaPrmqWVnE75 WK8bsT5VlvixHUqlXS5W9X3YI2JqGY88iouT6a0GPoktLmCJLx3Ax1GtyeKkgT/CBlOnjpnI AlMcFvE4NpbLkhz2Qwai4t3W7WgnZkk4GeAYSpPq9SE3hnHRdc1iCcQY4NtoDnutiMtQGmd7 REwoWbSNXk+pE+j7sc54luSSBc6g1Nl0A0rfbOd2whgPXEP5XNv7RNctiyVU9qB87YBfYR1N E8MWKM+Q12UhjywtW0XYL4ulGUxHlZe8870A3ApMi7BflhqYBzyKf7XZBHwB61tlSS+dqPBu cWjZE6jQqyWGHIiq8XoHbA1wGjrzWyxpJoPqYK6m1Bn60Aj7ZSnDaUg4eQdqEYoTtFjaiQOB hfjfhbXAeyLsk8Uhi/JTbcZ/fn8E2DXCflksUbIz8CB+Zfxm4CzsaSMyMsD5lKab/Qc2b5XF MgX4G6X+hxdgfbVaTg64EL/zXB65MtgsjRaLGIdCd7wWxH6sEaqldKC6f96YwDzwA2zqYoul mByKofWmqhkEvomNn2063ahckvfh54GvOz+zWCyldKFFvlhoXYnNrdU0OpCw8m5vB9BA2FAE i6U6GVTYoh+/gepK7E4rdHKUrhD9KGOoFVYWS21kkaHKq/s1x0Or0wqJDFKwe3VW/Vhrh8US hAyqVeC1rg8iRbx9nxqk3IowgHZW9uFaLMEwLkHe46HZBFg/rQb4AP6VII/VWVksYZBFOi2v mqUPOZdaAnAafg92Yw20wspiCYcMcDF+odWL6h5Y6uBA/LGBxs/Kui5YLOHShSyFXuv7OmIa MB1HPdA8FFKwjef/fg58EJ2zLdGTRYvHKE/rQrtf00AvgWn9KP2JaX3IrG6JnhzwPZSJ18iE ZcCxKF1TbIibwNoCuAU3h88QKh7xViT1La2jEwml6WgRmQNsCcwCtkWVWkY4rdv5/SwSVkZx W0DCqoCMJb1IUPUCG1Hqk5dQWqAFKH/TK87vDDT39ixFjAV+A7wBVy48CRwJvBpVp+LMeJQp 1BvI/Ag2kLkVZFDc2b4oDclVwH2UlpVqRVvlfPaPgPc6fRqHtV61ginAf/CPx63YdMslZFHg svccvQibIqaZdKLyZ+8BfoJ2OBspzQ8eZSs4fXoOqQXeg3Z4Nma0eewEvIh/DH6NNXb9lwyq buOdqGuwyfeaQRa98GciPeE6ohdK9bYNaCd+JjAb+yI1gwMpzVxqfR8djsFfimsTcmmwhMcI ZPX5GdIbeXeySW15pO/6JXC4c4+W8Hgb/hzxG4ATIu1RDJiJXiDvJPwCVl8RFiOBE4G/U5ro ME2tFyVuPBmbfSAsMsjz3bu4LaONK0yPx18+voBKcdkgzMbpQNv6m/E734bZCs6116KdzgLg AeAONK7/BO50/m+B8ztrnb9plp7MCK4DsUfFMMgBf8D/jt5Bmyrhr8I/cedj6waGwXjgCpqj n1qBJuxlyGfnSOTusIXzuaNwXRyMW8Qo52dbOL97pPO3lznXWtGEfq4DLsdmnw2D6ZSWzvsx babPOh1/9oV12IrMYbAfcD/h6ajywBJkwT0ROfN2Ec5kzTjX2gY4CenXFofc9/ucZ2JpjN3x R54MoEWnLdgReBn35vtoo5tvIkcgHUNYx72ngA+jFbYVOsWM81kfdj47rGPjMqSUtzTGe/Dr QV+lDdyORgD/wj+hvovVNzTKYcBywnnJVwKfQZ7PUTEWKXxX0vj9FNCziWVsXILIokR/3md7 Jyk3cnwa/5b/ceTFbAnOdOAZwtmNPIs8y+PCfqhPYdzb0+hZWYIzBngY/7H7IlKqzzoE+XKY m10N7B9pj5JPllLjRdD2BFKKx43tUUxbGDutq7AuM42yD/6dbw9SR6SKCSgu0DuBPhlpj9LB TOQu0OjLvJlgR6YcMBqN79ZIp7E3cIDT9nb+b2vnd0YTrODBYYTjnvEKMCPA51v8fAz/c50P TIq0RyGSRXoq7y7gRmyljjA4iXB2V1cz/M6jE1n0jgM+B/we+DdSavfjTyVTwM3U4E0vs8z5 m98Dn3WutQ3DzwUTaxrGLuvEYT7LMjwdwPX4n+sPSYku+lD8Lv5LgbmR9ig9fJDGX+J+qr/E HcDrkQPhYvzZKRttg841fw8cRfUJfxJ+V5ig7YNVPsNSO7NRaiDvLv3ISHsUAuPwHwUHgbdH 2qN0cRyNv8CrkKtJOTIoVKq/yt+H1fqBz1NZgbsjjae7KaB8T5ZwOBn/AjafhHvBfx7XKlhA 20gbehMes5A/TCMv8XIq63Vy+MOnmtkKzmdVOh7OcPrayGdYHVa45NDu2MyPPPBVEmo13Bvl MvJOlh0i7VH66EC57hsRKOup7sqwK/BXZA1qlrDqQXGku1Tpx374s3oEEYjWShg+s/E7gvcA r4m0RwEYid9BtIAsC5bwmQE8T2Mv8oeH+YwRyAXlcygD5XKksxikPmFZcP5ms3ONW1GpqQMY Pj3Mh+v8rOL2PErtbAmfs/D7V96JYkhDp1lbt7NRAK5Rot6OdAe9Tfq8dudA4DqCH3eeAA6i trz5OeRAOAulGtkapbGegpvn3VQ3Mvnb1yLfneXI6PICsBDtwAdr+MzxwD1U34FVYzFwKnBv wL+3VKcbuAEZTkALyyeAb0fWozqYij/H1TpsAGorOAhZbYLsQgoo7KIRV5MMOm6ZQhQdnu8b WRhzwLcIfl+LkR+XpbnsiT9A+lUSkn3lCvyT5tJou9NW7IJStgQ5MvUhI0mcfGk6kJWyj2D3 dCdtEKAbI76M//l/n5gr4PdF23/T4RewVW9azVi0SKyh/l3JAHLQ3LrVnS7DVqjwRL2+VwW0 q/8G0QZwtyNT8Me1rkfqiliSBf4Pt7ODwAci7VF7sx+KKKh3d1JA+qUPIZ1UqxmP5s2L1C9w +3EzjsZ6ZU8xp+P3zbqFeO3a/8ub8VsK7sGWY4qaTlTk42bqL+E1iDIlfAHpJ0bRHCGQca69 B4r8f5b6vOkLyJT+L+RIa+dctHQiI5sZnzwyeMSKcfjTTvSSAjf9FNGFkthdTbC8WRuAu4FL UBjPTGQpDCLAMrhWxhOBr6HFzZvJo1ZBtRz4BZprVlDFh0PwB6vPJ6Tdelgr5oeA76Fj4RDw v8D/IOlqaR6j0OJQqPH3s0g3dCzwVmAvFGVf65bdrJh9yPq2yPP1ZaQ76sMd9w5k8h7vfO4M 5AtlvnY7v1PrPMyj8JyHgT+hI+/L1Hf/XVj3mmaTxa3cnUHz5mPAd6LslKEbf6XYDdjg5lbx bpQUMUhNvi6U/+q9wK/QUSyM4GKz+wkrnKfP6dsv0SI4h2DhXV3AucC7AvytpX5m4y+Espgm OZPWyzn4J9iV0XanrTgb6XtuRuEQQXfM5pi2O1J4/wAd0xYhS08rCq/m0QR/CblmXImE6a4E P34adkehP4PomVlaw7fxj/HHG71go0fCSch72MQIrgJei0ybluZzNnqxh1AG1x8iP7jlDV43 g8KrxiJ91TboGLeD83UiMmFPQsKkm+HnktktrXXaKuT9vgjtoMzxcjEyEGxu8B5AR9GzgI8i 95oMWmCvCuHaluHZHsmHLZzvX0BhWCui6tB5+IssfiuqjrQpZ1N6FFuKwiKa6WWcRQJtPDAZ 5UqfjVLAmKyjewO7ATsjoTfd+d1x6AjbTLeDKcCZlHeNsDus1nIJfhnxmag6MpbSEJxtoupM m1IssLzHqxdQqo+ZtI9P0nTgfFQmrJJrhBVYrWU62v2b5/8K0fj3cS7+1euSKDrR5ryN4ZXf PcDvUMbOSCZKkxmNMqJejY6awyn7T4mmm23NF/HPyU+1ugPjgMfwS83Zre6Eha3wW2irCa4B 4DkU33Uk2iEnMTeU0a8dgAK2n0C6sVqski8AW7a+y23PDPw5s56kxYvnqfjPpZe38sMtPt6E P1FirW0F2nl9EOmbRhPPEAojoOYhN45rkOAJ4vx6Umu7bvFwKX6Z8e5WfXAGeT2bidBPPOvZ tQsZ4J1IAAVNwbIR7b7+giouvwHtmCeg9C6t2Illnc8aj1bkI5FR51doF7Wugftbjp5Ru+jy 4sgM/KXuHyDAvAoygIejAFOTO+k32MIScWAf5OKwH+HslPqRi8ES5HLwDNrWL3faGiREBvCX 9zITEjS/ivNkdaHj6ERgGrLobYmcjWchw822hGNJzKOyYh8GHmzwWpbG+TnwHuffg8DxyIew ZuqdEB0os+Vbne97gaNR3iFL9ExE0fIfRyliwt4ZDaGJ1o8E1YDz701O68VNmwzurqkbHTlH IYGVQ97qXc7XsHc+xr3jW+glWRvy9S3B2B8FqRuP9z8jWVJL1tlAzMOvL/kHtgpOHJmBQnae ozVe6nFpeeeeP4fcOSzxIofiP814bUKZQJrGpZ4PKwAnNPPDLA0zDTgNLSyrSafwKqDj6S3o uDENq6uKM0fjVx1c1qwPGo2/0usz2N1VUuhCHucfQy92Lf5KcW5GSN2KHEV3w6aXSQo5ZEQx Y7kUuUmFzttwvYcLyJpkSR5dyAL4NpQC5FEU0xdmCfqwm0kr8yjwY7RrnI1bnceSLLwhfXk0 njVR69Y5B/wReKPz/VrkuPd07X20xJAMssZtiTIa7I50CnNQ4GpU6UA2oTqCz6HcV0+gJHBL cBPDWZLL9sD9KLYU4CakXhpW+V6rwNoReAh3Av8JeAt24gTBmPkzuDqlOGGE2CiUjWEXVH9w S6dthfREI9FuzTRT2svcH/hX0TyyKHrbSmAZcpd4GQmpBahEVA+u306cyKD7NCeNuPUvKVyH mzq5F7njzB/uj2qtQ/dO/KvtNdiB8pJBOr6tkB/RTPRST/K00ZS+2Hm0qgygncMapBxfjRxB X0Zn/CXo5a41s2YjDDl92YyOYc96fub1q+pGc2Kk03JOM/cHrqAaxK34vBntoIrDaaIkgxxW t8FNpTMVd+wmonvsxL3HYkHcgzt2q5Gvmhm/xbjJ7CzialyBNQLJmGHVTLXssEYiybed8/3z yL2hHdPMZtHEnomOT7uhHFHzkN+TKR5a7rnWki+q3P95lcxPoePRY05biARb0/xYUkYHEkDb ofTQu6LTwy4oZ1O1wq9Bx89kX12O3qMnkC7uCWTEWkt7phLvQnN4R+f7l9B49DR64SPQCmJe nq80esGEMQIJpk8hH5Jn8SfYj6oNopX7dlTA8ki0i7MmfRez8z0YPaPbkJAPKxV0I60PxUTe iHJE7UOwVNdJ5iLc59GPXB4a5irPRXtosqNXDMgiZeBxKIPnYpLjArASGUfeiXaBcQxmbjYd 6Fh3CvAH9EyiHpdaWgHNtZ+hakJmx5dmdsdfLeknjV5wLDoCmgs+RHp9rzrRA/wO8jHz7iqT 1vJIf/IL4Ch0rE87I4DDUCjOEuLtpjFcG0A7+SvRziut71wOBUGb+16IVC6BOQr/g/xsY/2L JaORu8YtxOOo1wzh9RAqxWZya9dKFDu0ej9zMkqR8x/S6cnfi+Lv3oTy56eN8/Hfb9XomeH0 HT/CLTefR8fBYU2PCaELZar8FDKpNkt/MOR8LT5Wgvv8va4OzdJBDaKd43dQypaNNfzNLmhC rUKJAo21az3ayhvXg+LaiMX3B7q/EU4bjXbv49CKui1yBJ0MfAMZF4ZjNHI4PAd58ddq8a4X M15eFwbv/Xktp+b/mkEfyjhxCcpw0N+kz2k1c5EBwuwir0Hl3MpS7eGOQ8JpW+f7+4FDSceD 2g34Es0pbT6IMrAuQwLiJWQhegVZ+jaiyTeE6xowAblBTEUm9TnO12mEL0gLwH1I4Xkr1V0l MsCFwOdxBYI5shjXBJOxYcC5ljH1g+vikMWfncHctzdTwyBKpftVXIFQjiwyMHwRRf+HvQvs RWO1GDmuLkLj9yqy6Jn7zjj3MQa5PUxH4zcTWY63dP4vbEHajxT1F5GOzUMnmocHOd+/jFQz q+q90BtwrSlpCcXJAe9HOo6wFOkFtOv4F8qQcDhS+o4i2GTtQEJqGnohzwGuRy9MmHqZNeil HztMf8agFb3ZR5+ba+jLWGTtWxvi5+aRQLoePev9cReKIMIwh8Z+GzQXPo3mRpjxmwU0h99P 83aWreSTuM9mkICZYS/HfUBpsA6ORRbPsJTpeRQ28km0ojZz4mTRan0GMs2HZZbPAzcwfJ7z A9EcaJaw6nE+oxpbOX0NS0814DzL9zvXbqZFLoeOvJ9Acyase+gHvsvwgj7uzMNvLay7bmQ3 erDmAk+SbEvFGFTqPIwdSgHFUJ5BgxaNgIxER9l7CGfiF1DK66lVPrMT7UCaJbCup/r8mubc bxg7lLxzrWOJxno6Hs2dpwnnfgaRNTjJCvkO5Exr7mk+dapCtse/in835A62kg6kyA1DWA0g P5lqL3erGIUS1YW18/kzUmRX4hRc3VuYrY/qpbfGAH8N6bN6kKU7qqBuL9PQXApjtzwIfJ1k +919E//97FTPH5+J/4EcF3bvWsgbCMddoR8pOuO008yiFLPe7XTQlkdpPyqxDf7CuWG1JVQv wHs+4ewkNzjPKk7OmJ1o0QlDTbEJOKa13Q+V1+HfcX64nj/+o+cPV6JCAUmkGyk8G50MBVTP rxE9lTF9d+APFK4Uu1YP5xDOpF9G5WRqOcJ5lsXtX1R+ruORxa7Rz+in8YrPzRq/HJpbYRwP byG5OcImIcOSuZcby/1SuYkyGXiN5/v7kEUpicxFNfcaZSE6SgwXZGxM3dOQO8hc5KKwBTJ9 T3B+blwpBpEZfQMy465BpvTn0c5jKTrGDJel4WeoAskxNPbyTEfOwn8s87NB9BzC5gUqP9ej 0LNsBPMi/6yG382i4+KWyD1hezR+E9F7MRbpVsx704+OtGvR2C1HY/csMs+/wvD5uwbRLusY Gi9GvI/T3ycavE4UrEW6xTc53++NVC/Lvb9UTmDthn+S/IPkRpPPobpeplZ+RXW/kG6U0PBE FGg7k8ZiwYaQv9ZLwL3A39BLt6HC729CcVhH0/hubVfKCyzQSxg2y4bpS6MMoWezucrvjEXC 8Vjk1jAD7e6CPsshlGLmBVRR6i9o4e+r8PsrgV8jn7dGGENyBVYByZqT0HPfAnkmDFsG7EL8 5+K9mtfHpnMc4SiKD6nyGbsix7day6UHaYPIcvL6Kv2YgTzQG/2sT1b5jAur/F3QVu0l/VQI 11+P6/xcjqPRC96s2MMCmhu3Ul0AHxrCZ/UhoZtUiqtyfan4F4p3AFm0whhWU1uYRFx5mtpC UKph8omXoxN5gR+GjnnNCsvoQJP9+1TWUWxADqyNEqeCow+HcI11VJ4D3cD3UAhSsyxsGTQ3 DqO60WYljZ9kNqCMrUnlGfQcDPtTJKOKBVY3iqszPEiyE/UtAu5o8Bomu2Y5BpAP0Sq0IjST HuB/qRwaZUJeGuEF5JMVF+6kcb2ZCQcqRz867jecNG4YhtAc+TOaM+UYQeMWzNtRSFFS6UeV ug37MIyv3Dz8x5pPNa1rreNgGjf7v6/K9TPo2HwZWt1M5eNGjocFT1uKHAOPoLpLxX405tPT j7y+q9HqIyEoE0Mj9zUA7Fvl+p3o2f4C6Qy9z77R8TOFXS9Dc6TaDvx9DXzeEJrjB5VcNXl8 HP99+VRSxUr3Q3Af6hBwV7N71wLuRnqZbxLcYfA9yFO+3O5mCB1dHkbxlrNRmMmuyMo0AylD R+JamIpznvfh5jtfjDIjPIlWm6cZ/qiXRSXqgx5rhoAfoFxSceNqZAg6m2BH7g70bB6ivLV1 AOmXbkXK952RlXwXNJbb4uat76Y0Z72x9G5GR89FyFL4BDKYvMTwO7guNMeCshnN8XsauEZc uAvNRzPWh1JFNfALXMm2gnh4dIdBDgmToAr4fuqfUBm0eo9EZvFtUMzhrsAeyAIyD+W0non8 UIozGNTKa3GPpfW2PKpgUos1NYodFui5/C/BHUhXMXysYjFm/EYhl4aZaKzmobHbA43lDmhs vYUq6h2/0wnuR2ccmtMQBA161stw7++6Sr/YjVZ184u3kZ6HANqFvI/gL/Yq5I0bN7ZHR9Eg 99QLXErtcVtRCSzQ/LyY4FELT6FnFTdeR/A5uQYdmZMcklNMB3JvMPf4DBX0WLPxP7hvt6iD reYgFGgZREfxKvEK79gfHT3qvReTnuQd1LcoRSmwQJP57QRLD1RAriH7l1w1GrIohtLr3V3P vTyOX4WTJi7BL5TnlvulI3C33AXg3a3qXQSMRYniTK2/eiZLP8rE2qhXciNMQe4UQfyuNiFd 1YwAnxu1wDJsg3RbJgqgns9bj45Qk0uu2jq2A35M/caEAnI1uoTKIVRp4O2441qgQjWdc3Af TC/+8Jw0kkE6iV9Qf3K1Agq7+DpS0rYiILoDKYDPQ9vkevQ5BXSUugUtTEGP+nERWKDncTDw dySE6xm/PAqfOR8901YcqTqRIv9raO7UO9/WIW/4XUnnrsrL3viP/mWD8n/s+YW1SInYLhin zKXUr9jdhF6ajyBF7FjCmVAZdHbfASllf0/9uo4CGsvfIi/5Rl/MOAksQxYJ4WvR8aHeHdcq 9GxPR896JOGN31g0Jz6CK1jrHb+X0Y5+txD6lBTGop2keQ7XmB+YlTaLP2xgCckNeA7CE8hs /hXgZKSn2hO5IwynrxqJAlePRmbtl3Er+87HLdywAa0axhoEmtQ5pPQ2RRm2Qrs2U1l6tvOz WvVmQ87nPAf8DsUFPkN6q0MXkEvCHUjgvAWN31xqEz6TnL95MxqjF5F+6DGkqH8Zt+hGL24I D7he7CPwF9TYDe2m9kSB1GNq6If3fnqAR5Ag/aPTh+EC4NPEBuQwbDZN89D8L5iH2IWiok0G zeuQQjbp7IkEwn/q/LscmnRHIWG0O9J5BFG259EAGIHVh7uL60DPfiSuwApyXBtCL9VT6OW9 AQnNej24p6OF658Vfn4h4Vf+/izSJ5bj9eieltR5zdHI4fBYZIXbCT3bIDunQVyBZRacvHOt DmS9NOM3lmC72ALSpz4O3ISsZE9Q2Su+Ers7/Xo0QB/ixs9xXYl6kN72v1E3c/FvRdNQcALg VOTTcRbBU8h2A7NQ2ovvoPCHZeghRlEHr4COFsuRY+KP0OKyE8Er7HSgQPHHkNymuMoAACAA SURBVOtAJVp9JLwYCaw3E1xPOBLtWE9DKWbuR8JhM9FU9M6jnfhStLh8C2UomEHwCk4jkcvO EjTn08B5+J/bPHBX852Lfvnx1vWr6UwFrkCpX76AJuxQtT8oog9tTxeiuMFuJO23R89tLtqV mDJPkwinNNcQWs1XoxfsFfTyPu00EyhaLW1KLcxExRHOQDuTGxq8XtjshJTN1yKF9TN1/v1m 9NyeQnGDo1D6pB2ctjMyvkxD4zqJcIwoQ2hhMXmyXkYqgueRv+OLSH/WaNm8PdC8Pp50+WMV lzDbGZhvBJbXRF9ADzVN5JCO6bVo4l+BnC2D6AX60Oq4FOlNzNEghxL0jUdHg2lIiJnEfWPw Z6vM4Ibm9KPJvR5FGKxAAmo90n+tRccDs6MLg2nIdeWjwNbE2/I0AgnU44EfovxWiwn2LDYh YfEiOn5lcQPcveO3JXpGE53/G4V//EDHRTN+PWicViDfqhW447cOd6zDGL8MWjDPQsaCic7/ pUnPZRI7mmc9C883Mz2/aLInpg1jtfkAUrL+BllGH2nwukPowZoCqq80eL1mMxVN8veh3WFc nGCHI4P6fiHq/zXIF2thg9c1gcqDSOgsbfB6zWYOmsPvQkI1zgtNI6xHpwsTHjgL3Mnq3WGt oPnpNlqFcczzkkEK9P+HAqP/inQkaXbjMGmDvov0VF9Dx6FywqpSVswoKNeXLNL3fA4FNF+N AmSTXOZqOMagE8K1KOXTJ5A1uVhYDVG/oj6u9OBPjzwL3KOJNyNjmgTWfLRjLOfVnEHb/OOR Nek5lPj+t8iqmNS00F5mId3dKcgZrxYzf7UMHXehhHdT8eepH4ubzaDcS2SyUWzA3cGvQBOy 2udVyz6QcT7/dOCdaKz/gPSMT1b5u6SQQYrmtwJvdP5t3tdKrCE9+udNaI4YtsbR0U1A50Wj jf9ly7vWPDIoDKPW9LfmaPACsggeh+dBxZwMGsv90LHpLty0zbVYwwpIuV3rEdGru+vETSA4 Bul8xjv/7vb83KTWqfUY04GO7rVa8wpoh/EwsjAejARrEo5NWbQQHIF2wMatodbxM8UsknCv tfIz3Pt7Cad612xkbTI/qOQTk1RGAz8lWM7uPLLu3IryS5+E9AZBzc9hkkMCYT+kOP8t2iX2 EsxV4mbiWc5tKgopCuKCMIB0XH8FPo38uiYRjywknagvRwCfQYVGXiLYPB1EczyMgitx4vO4 97gGmJPDtYLg/CBtFsIepK96AZ3963EgzCIBtSVwuPN/eedaC9Ax5CmUtO1VJPiNf1Ye9yWr F1P/rgNZyCYii+OWSPe0GzLF70Lj5dY3Iye989A2PG4sRwvFZciqWY/LSA4ZlGYCJzj/14dc I8z4LUCK9leRm8Fm/OMXBFOvMIfGZwqyOG6NzPNm/ObSmAvFELJAfgMlqGzURSJumJNfBr23 kzNo1TGldApI51G2iGHCySDl7CUosDuMAqaGAaSf2ei0ZWjyr0QTqs/5uRFmJkwmiyasCc0x XyfhTvIJaOUcR3kdUVAKKAD4QlSGKu7K2k5kHPkyspSFZd00/m7r0fisw3VLWO38f5/z1YTm GP2mOeKOxj3+jkc608logRnr/Gws4e3Mza74fuTkfQfhubvEiaOB/8NVyZwA8pI2265+6s/M mDRGAP+DFOthVEtOWhtEjqfnkUzL6CSUZeFpmleaK86tH83dMwjHQTnO7Is/S/AZoBr25j96 kWdxOzABWc9uQqtqFGEarWoFNLYPoOPx9BCeX9RMR/dyP9GF2bRy/Dagk9CpJHOhCcIcitLM 5PArWguk02m0HGtxsxnsArwNHY93I3ixirjRh3SSNwF/QitzI6E8r0WhIK8g3dJaJAj70ZHS a9UC14vcWAlNZoMJSJk+HQXqBime8ApKCfQzZHh4CwpU347Gy53FhR6kZ7sZzdUnSYe7Ta2s wq9HnFIssPJoErYTeeS7Mh/lN98F6bqOQr5L42hukdQwGUQ6tMdRTb+bnH+vRStUoxyBrKXG s99b9acXNxOFeamM4aAbCSpv1RkT4nIRjVV76UMuHHcjQbg7ElwHo8VnNK1JsNgoQ0jgr0MO sbcg3dSTSHCFMX5JYx3+tEglAmsD8fJ0biVD6GX/t9MuR4rTeegs/Vq0em9L8FQlYdOPYuqe R7un/6DJvozmWYyySIDHwbXDyxA6HdzutC5ktNgL5XHfF1kLZ9C4ZTUMhpBVdjHSx92HdpuP oN1rO+2kKmFOfCYd9JQcfi/wSiXZk8rr0Y7pp9Rfsn4QWYteRfmhjIl6C+S7thsKQJ3pfJ2M dhDmZa7HQbIYo7cwR60+NHCmZuGzaOV9wenfevyJ5YLQhawyW6IYyzjwQXR/f6N+AWyE+WLk h5VDu63pSDeyC3IRmYUWoYm4Tq5dNGZFHsINiu5H47cKLSwvOV8fR+4wy9EOqtEEi6ORUvpp tDtLCytxY52n5HB9sCB9+qtJyD/lVHTcu5HgE2MQNxHfC7hJ7oy/TTcSWlOQUDOmbOP1bWrW mZZxrjmAG3hrrm+i/Fc7zYRLeY9bYZFBbh4XoqPUt0K+fiPMQvGP/0AOzfcRTCib49Zapy3A TaNjjqej0LhNctp4tLKbxHyjcb36c55rmrYZNzODGccVSFCtQkLLVAUPkxwKLfs0Gsd3hXz9 qFnt+fcks+oYGs2tFEeywAHIE/wBdNS7CU2oMDA7oX7c1K5JYASa4B8B3oBe2Dgcc4vpQiFS h6Odw+VIcPVW+Zt68OrhkrRgj0XZVM9F87uTdOq5vDvrnLdsOsTfeTAoJvf2QcjPzCRz+w0S MGnKI1SNDNpFvAl5je9PMhTSGbSwnoSE1wOoEvQf0C4mjS9qObJIHXEySh+8C34H2jQ+B69M 6jJbYUMad1jFmIIbX0X5xO9FJuPbkH4hrJU7LuSQXuoA5Hf2OmRNS0oerGI6kQHkADSGt6Dx ewCF2KRt0e1GOrbXIU//Qwivsk8S8L6PXTn8EzetlVXKYdLLvM5p61GuqH8ic/IjuJkik0QG 6c92Qm4IhyNL2TTSNcmzSFF+CkrBshJZSW8D/oUME6bQbJLoQLqzvZB7zZHIUt0uzqLFeN+/ nIn4N8Qx+LVVjEO+OwfhVrp5DK3cD6BMCIuRtdGkbYmSDG7Flq3RUWEfp+2FHDOHy5+UFsxR 91ikjxtEytoH0dg9iKyrS3ErF0UtyExa5jFoBzUHOcDujXzJJtCYpTkteGXSyOIJnbTdRDMw tQInAoc5zfhorUST/mlkkn4WmahXotV8I+EfKbtwg58nIl+wHdAk3wGZfKcgq1ZSj3lhkkHH xmlI33UcbuXklejY/wxafJ5BFt81uMHPYfuvjUBCaRxu8ZK5yB9sR7TYTKG+2oXthHdhyRTv sOr1VWoXTD74sWgnczDugxxCK7rJpFnskrAGvQibcHNVeT3BQSvtKCSYJiDBNBnXtD4Bmdq9 Hvd2cteOOT5ORMLiKPzjZ6oTrcUdv1Vo7Nbijp9xqh7ETWCYQULJjN9ESl0jTGZW7wbBjl9t eLMfj45DIrOk4p14XegINrXyr6eCZhyjojqaecdvBMqRvlVEfbHUSBb/rirNifwtjfMXwq0K 9AryQrdYKuH1E+3J4l/hkpC7vB6sXqB+JlX52XyUQC8Ma/Kgc61qRROq9cVSirEQpwnv+ztU vMNKS1oVkL7gSKzAqpcDqT7pr0ae5o1yH0oNU4kxpD+ZZNhk0JxPk6rHG6i+OYvfPJ+mHdbr kUewpT52Bc6hsqDfjCoKNWJRzjvXqGRRzQBnO32x1MfJKIg9LXiF7yDIRG8y+t1Q7i8SyP4o Cj7qTJFJbQModKcS4/DPm3rbAtyUIeU4DbcIrm31t+UoEiAN/An3vl7MUuRJGkmXwmUEcAVy JLQEowPV9Ztd4efrUUTAUIBrDzl/u77Cz7dDdfnStNtvNVugKkNpyPnujXXtz+L3JE2DDuso tMOyBCeDHBrPqPI7txNcYN1e5eenO59tdY+NcQAKOUs6XoE1mEVOcoYJLe5MM3hT1B1ICRmU HaESzxLMq7/X+dtKvAkrrMKi2vglBW+C0dVZFK5giGPl33rZJeoOpIjp+BM8ellOcIG1osLP JpCOij5xIQ1GC69MWlkssMIs9hgVaTi3x4UOKs+HoCmZh6jsx9WJjYcMk6RXDzIhVYZVxQKr g+SnsXg56g6kiE1UzsI5nmDJ/zqpbCFcS3tnDAmbpL8L4/EbAlcUC6xiiZZEbou6AyniHirv hrYlWPWZkShTQTkGCMcp1SJui7oDDTIJ/457ZRZ/pZw0CKzfUNlkbqmdfuCXVX6+L8HcYHLO 31biFzSvRFk7sR5lYk0yxZlxV2XxK0DTcCRcjFLntlP21LAZQkU7KpWL6kaJ8oLyBirrV/6B XrQg+jGLGER+dIuj7kiDTMLvj7cSlKHSKFALwHtb36/QGYlq60XtcZzEVkDHsmoW431QDGrQ z+ih+i5ritOHQgyeRxLbj0mHT+W7cOdAHtg/hxKXrUPSLIM8jZPOZhQP1w98COs1XStDwK3A 2/HrNovZHu2+JiIF+kh01POWoQd/OftBNC7rkSJ/e5SDvRwrgROAa5Hzo/XLqo08Elbnko5i KrNxx349jvpqIsp3baRzNb1F0hiFwjz6iX7Vi3vLo3xX9frimay1E5CT31RUpWdL59+TnZ+N oX6d12QUS5Zv4n2noRWQweLrpGNnZfgp7j2+hDM3syhJv/nBHaRrR5JBwbSLsEeMSm0dcAHx 9MHrAj6DdmV2/EpbAc3t00iXD1sWN151CFWx+q9cut7zg6eoHkmfVHZEhTd7sRPfTPRB4G5U TirOx64MyqN/N26596ifX9StgHLM/xHYOfijjS2jUXJHc783en94uecHK9F2Po1kgTcCd+GW emrHlgeeQPq9JEUGdAMfAJ7ENRS1Y+tHc/gk0nUa8jINeBX3nq/y/vBczw/ypFNiexkDvA24 k/bZcRk9x3zgI2hCJJWpwEfRCtxP+4xfL5qz7yB9qZCLmYs/J9onvD88Cf/DOaHVvYuILlQd +WoUxpBG5W4B6X/+ioR0mo77Y4G3oHtbRToFVwFYBlyDsujGUc/YDF6P/zmcAq7VZkHRL88j PdlHq9GPzPh3ANugXFpvQT5CxU5rSaKAYvIeRS/zDahydV+1P6qBw5EP1lKkqF+PW4B0M/7d Kkj3lEXHzpG4BWHHoTixrZHB57aA/dmA9JI3IHecE1H1572dz0qqEjqP4iofRA68/0KK9XYq dLxb0fc+GdWFHpCRZr9uUafiSAeqpnw68ml5kmTou/KoivGfcfOhhx2tf2HR5/UigbUapZtZ hoTZEqctdf5vufM7652/8e5kLwy5j53o3s8Cfo+eSRJ2zn3I4PVzlDhxJunIAByUa3CfTQ+O rtXr4PcUbh7oYumWVLZDq+xzdfxNHvl8/Bz5pI1Dwbr7IEvVns73Y5BAiMK61o8G8RXgMeSA eTe6zzUED0uaCMwCHq7hd7Po/puZwmQvNBar6/ibAWRQeAL4Ebqn2SgL7WuBPVDOrdFEc7wy wmkj2jU9CvwbuBfd6waC76RMSusXG+xjHPDKoAU48aVGYBXQABuBtS1y9lvbqt41if2Ab6Mc 7z+mcqqUShTQM1iLBMM1aJJPBHZAAnEHYCf0EhhnybCc9/qRpeRVJJyeRYP3IvCM8/9G6dwI Xci7/RPoCFmLwGoFp6Bj3tfR0ahe7+1BFCu7AgmFq9C9TkPjNhuN3Vw0ftOcFpYg60G7y1ec tgCN2wvO1zW4Ts2NMAFZTz8CnE/yBdYY/PUE5uPMce+W81HPv0egQXyg6V1rPtOBS5AJ/3Lg OipnvBwOszqaCXiH8/8ZdBQZiXYcY1EhgGloMo3FTY6Yw30hBtBLNYBW1o1IOK5AwsgcoXrx e+uHxRjgGCSo9kHH4bhVYt4FeTyfA3wL+eNsrPoXlTGWtpecBhq7DBqTEU4bh8ZuC1wv/bFo jHPO1yHc8etH47cBjd+raAw3oPmyGdfiFSZTkFD/OOkIqTPMwZ+6qGyx3SNwz/oFqpd5Sgqn 4tdfFIDngS+go0+7MgnpeB6i1J/p4ip/dyHh6Gu8rZoO6+Ki3807fT4Lf67vdmNb4PNoLnst o3k055POqbj3VUCLKuC3oryEewTMoLN+2jDB3RehI97v0JFjMvH29A6DMcBBwJXoaPJdpCNK kiU0i/r8XWQM+T7y0h9Duscvg+bocehoPB8JrO1I533vjj/o+b9HXO+RcCk6b09yvt/b+Xka 80pl0Bb/rcCb0QO5GQX/3ou28mFv36NgJFJenogm+zyCpTWOG1mkKzwTeB/Sv96EwlTmk440 yxlkGDgIuWocj/Q6SVpggtCBdM+GFcjiDPgFVh+yNu3kfD8PKZeD6nuSQgc6M2+P9FyrkTfx /6GAy2eR8jTuPjBZJKC2Qvqoo5Df1Ex0j2lciUECeE90IjgPLbz/RIkAH0VJ7DbRuGGi2XQg Y832aPyOQcJqGhrbtI5fMROQ7DE8hGcBKvbzuBclzQIp9OaSfoFlyKBJswVwstM2oqPyI+jB 3Y92YyuJPo1vBzombI1M9nuhiT4DjV27THBDBs3nmSgJ5f8gK9xCtBA/jMZvCVqUol6AutA4 GZeLvZHQnUG6ohHqZTb+Um++HP/FAutOz78zwCGoEEG7MgY5Ie4KvNP5vx70EixC1ovnUFjP y0i496Ldaj/BLUOdaEJ3I6vVBCSYtkIDOs/5Ogs3pXW7CajhyCD1xiQkDMw4GCH2Ijo+voic W5cgHW7x+AX53OLx2wKN3VZoN78bEkyz0LHP/J1Fvo7eZ3GH94fFAut5ZJI1gbEHYDGYhzgG CYx5SC9kzNubndaDdmBrUfhKj+f/N+P3m8qiyT0CTdyR6FgwDgmpKc6/TWhLVI6qacA8N68Q ewuuq4oJLVqPO37r0XHEjF8vGmszfh247ixj0DiNQmFHZvzGOD8f6fyuHb/qeGXOaopCcooF Vi/aPh/vfL8vekkajUFLM8aHpwu3SvL20XWnqTTDABO1USeD638Fcv7dMbrutDWd+AXWf9Bi 8V+Kg0ML6JxvmISrhLdY/ozHYhMCS5Bl1mIBRR94U3T/myJjSblodpPVEbS9PawpXWsNE7Bb 8HrZosrPFgCfJRyDQ79zracC9sVSSgbN+aRyCG5YWx7JIh/lBNZjyB/LcFSF34s7OeBIrMCq lwNxj7bluI5wDDF3O9eqxHinL5bayaA5n8QsD1mUA8u8ryuoI6bVm+N9BckMgziFZKSFiVvL o0K01QT9CfizQdbbBnD1pOXIOH1IQlqYuLU+nGR3CWMiis819/G3ev74/+F/CI1U+Y2Cw5Cl J+rJk9TWj6L/KzEOeZcHvf58qvsafRBbmq2RtpLkqXKOwB8X+dF6/ngO/hX0irB710RGIkfP qCdN0tsypAStxBUES0lcQFkzKrEj/pXWtmDtEfwZD+LO13H7XrGuRCXd1GK0ghqOIjkxaMeh 4ElLY0xD3uKVuINg4S4FipwBizgDxQlaGmN3knMy6gCO9nz/NHLuLaGSwOoDbvd8PxPlJUoC J2AV7WGQoXoxkhcI5p/X6/xtJd6IHb8wGG784oRJhmm4nSL/K0M1699N+N0bqilJ40TaS5S1 kqlUNpMvp/4MoCAhVyk+dSLWlSFMkvIuHItbtiwP/L3SL1YTWPegMB2QtH4jySgxlJSjaxLI UtlEbix49WJ0FOXIkUwXmriSlPf1JNxd9XJUJLYs1SbHWpRixbAfyUjDujjqDqSIDVTOgz+B YC9EJ5V3bWsInv7YUkoS3oVZ+P3tbkE1Jssy3Gr2B8+/O4A3Be5W67h9+F+x1Mg9VN4NzSCY FWqU87flGEQpjizhcFvUHaiBk/Cfin7byMXGIQWpMTc+SPyPXNOQjiRqs3LSWw/ymq7ERQR3 a/hclesehTIkRH3/SW/LcbOuxJUOlO/K9HkxIYQW/cBzwR6U3THunEtjntjt3gqopFmlxakb uSYEvf4dVK5n2Ol8dhrLzreqDaJ3IO7silL4mH7/lBAsxK/D9TouAF9q9IItIIdKQhVXhLFt +FZAFmKTWK4cByILYdDP6EVFTSsxGlmKrNCqvw2iWpxJiCe8EHeMB6jBb6wWaTYSVSiZ5Xz/ LMqYGPccWd3ApahsexIGLw4MIUHxHhTeUYljkD5zMkoHMhnNkxG4ucFAC10/ElCbkTJ1lXPt 65FgrMRkVH37OKxfVq3kge+hOpNxfz+7kDe+cb1YjHZcG8K4+JfxS/Gk+GR1Ap9ClqeoV764 t37gasKrWh0Go4CfYeMKa2k9wAUkZ3E+Cn//vx7mxXfGrwj9fZgXbzJZVMqruOikbWoF5E7w ESrrlaKkG/gwSpdrx6/8+C1ERVOS5MP2a9x76CXkcLocKhFuPmA1qqiTJLZGSj1Tc9A27Vxu IBlFc/dAfbUpg9y2EfgJsE0DzzUKZuO35N9ME7wP3o6rxC6go1bSMEn9/oF0Ku24YheQgvMh VAkoSRH9I9E8fAi3mEfUzzOK8etFDpZHkZwjoJdzcccuj3SmoTMGKcbMg1tAMh8WSJofi1Zs r1k17a0PZfo8A1W+TipjUf3Mu2nMWpm0thHN2aSEyZWjA5XHM/e0jCbWYfyG54MK6KVPMt0o 5Og7yEE2jcrdPIoJvRZZ90yQaRoYg9LqXotyaKXRjWUA1cD8DqooE0c9Yz0chX9n/J1mftju yBphPuzvJHeXVcxUlFr2OqTETPpxYxVajc9CLilJUsjWSwaF+5yJ7nk50T//RloBnWauRUdg byXkJNMB/BX3PjehiuVN/cA/FH1gNQfAJJJDIQ0noKyaDyErWpzzixeQMeEZ5JrwDhSoHvcw qmbQifK3vQO5RCxAzybOC1AezbHHgCvR3NuS9GwGDK/Bv+H5K3XeYxCHvCORw5/5oF8DpwW4 TivYEU3g+Q1cYyRavfcE9kfWqrmo7HhHox0MyBCqKv000gfcDTyKnHrNhAjCVFQENi4ByAei UvKvBPz7DPKan4vG7SDkomPq30XlkFpA9/QsWhDvR06Ui9EmICg7O9d+utEONomrkf4UdHx/ I1VyX5UjyIBl0ITe3/m+Dz2oFwNcq9mcClwF/Ah5ADdaBDSDhNRYlGhuVyQU56Jj1zbOz0wl 4W7qP4oNoWfa63zdiCb3i8BzaDI+6fzfOly9WyOMQ0rsT6BjyAUNXi8sLkaWzG8Cv0T32wgZ tICNQwvOLqhQ8Bw0ftORgPOOX73vSAF3/Daj8VuC1AzPoh3fk8jbfwOu3q0RtkIRHR9yvv6m wes1g23RCcBU2H4I7bgqZQMpS5At5xA6Kv0Kt0z7OcB5Aa7VCiYCn0Yv5I+Q30rQFXsITbA1 TnvG87MsEmbjnc8c5/x7DBJiY9FuLYf73PPO9frQ5DVtPXo51yGfN68yOUxGIYHwYWAe8dRz zUTz7UNIQftrtIsMwhAS8Cud9pjz/xlcYTYRjdt4NIZjPa0bjZ3ZWQ86bTPu2G1E47YezZF1 aJyD5L8fjinouXwAnQLCnh9hchauwWAIjWVdwqoRxqNjlnmJXqZyjqMoORW/7qmAFLKXoyNC O+p4smg38UlkGS3WzV0cWc9KuZhSXc/zwGfQ0TWOArbZ5NDi8m00l726uTya83Fja7TLNP1c gBaGlnIe/of1lVZ3oAaKBZa3bUAZVd8FTIqqgy1kJHJr+CWlEz0pAsu78KxE93I88Yp/bBYT kMXwRrRrq6S8j6PA+hz+sftMFJ0Yh3ZWpiPr0Fk6TlQTWN4HuAodNd6OdopJdcrzYqydRyP9 3ULco0m155EEgVX8ki4Efoj8AqcRnTEkTLrQXHwr8L9ojg43l+MosKYitYbp46uEkKQvKJ/G fQEKKJ1LnKhFYBUP+FJUJvuTyFFvHMlJbzIKGQHORMrzF6k/kWHSBJa3DaB7vhbpVXchObuv DJprewMfR7v/pdQ/f+MmsL6MX0Zc1MjFGvXz+DHwXmQlywDvc/7vuQavGxVZtEvcCiUTG0KT 5glkGZ2PLD1LkXI1qpxDnciaNRmZ6OchF4DdkX4qDTuMIOTQ/c9Cu2Wz+3oMjd8CZCh5FSnu ByLoI0j5PBrtPnZC+tQDkdV5a5KzQA7HbGQUMPezEGUwDkyjAmsV8H2kAAS9QGeTjPSstZBB rgrbIP1PHll/VqGVfCFSAj+NjserUbWh9fhXRjxfq32W+ZpBwnMM2j5PRCb3OUhAzUSOoVsg A0gn6ZnkYdKBlPPbo4SDg2hsXkUGh5eQAHsOWY7XoPHbiP/oDPWPXweupXgyWgR3dPoyy2mT nd9Jm4Oo4Uz8dSZ/iPSngQnjQf0A5VKa5Xz/fuT7lNRdVjU6kPCYiISHlwJy+tuIFPqbkABb 7fzfRmT+HsAVZsbFYQQSTqORAWCi8723teuuKSyM28JkpxVXMs+jXZdxTdiIBNhq5/83It8q 48pghFInOnaORuM0yWmjkCvEaKe1m0VzFhJYhiVILjREGAJrM3Ls+y6uZ/EFyDekZX4WMcDs iMaQntivdsLsiJqWOaCNyCJLoMkIMoROYQ3XnAxL6v8KN/wlg5wRDw7p2haLJVkcCLwb95j8 NMrP3zBhCay1qJqO8ebtBr5KPB0zh3ALIpjso5bkYHzoVtFY3KSlOeSQT6ZJDDmELIWrw7h4 mOfqPwH/9Hx/AHLKjBNDwO9Q37ZBMZBfprGAU0vr6EWuM7sha9p+wC9oL9VD3DkV/+nqduIZ 2wgoINqbwfNZ/FaCVlPsh3UDpfX2sijdc5zTj7SyxdUPy/j5FS+yXagoih2/6P2wJiPXEdOf DShDRmiEbbm4H4VLGOYAHwv5M4LSj3zEigNnCyi20CQWs8STtWj8ioOI+5Gj5WPY8Yuac5Dr huFa4J4wP6AZptav4M+GcDZNzipYI/0o31A5+lAi/J84v2eJHxuQ0CrHprnClwAADg5JREFU IuBE4Dbs8TAqdgM+6vl+BdJrh7qINENgLQO+hrsSjkduD1Hnou5GTpeVWIdSYLwXJcNrRjoQ S3AmoDjBSiwCTkIhVYux49dKulAhVJOBoeB832j+uZYxCrgD/9n67Aj6UazDup3a/GzGoRS7 1yMP9l7aR0cSZx3W96ltkZ2GnBZvQyt9u5QEi0qHZXwuTT/upVRXHHv2w5+/eRkKS2glxQIr j1Jd1BrG0oEi5o9HzrBXI0E8H3nyL0T3laZqLXEVWENoPp1Sx993oTjXU4EvoAIj96KMn8+j 8VtBeoRZFAJrJv5cV5uRH1biyCCXASMwCqiARSt9s8pla9iEAjKDHIczyM+kE4XTjEWr+fHA g6Rj4sdZYBXQAnFkwOtlccdvFNpJb4P0lwuJ5nknWWB1IMW6tyjq10hwXOt4XOvNENqJvKWF n18pvUwPOqKGGZ83G71MUU/aNAss0xajRSLMF+Nokl9Ut9UC60T86YueJAXJMA9H20RzU4tQ poFWcDSVKwP3A9dQXZFbL98g+busj4f4PBrl45TvYwEtOp8lvNi/bpTNM+rn30jrRXO+FczE vyvtRUVtE08HUpZ6X+S/0JrsA1tTfddTQLmuTgupPx8h2QKrgFsNKQ4cQPXnOYB0iofS+G4r g7IJRD0GjbSX0ZxvNh0oYsQ7b35CijKKTET187wPtxUreQZlkRhuoPPAv1HNtMkNfF7SJ/yd xGvSdQB3MXy/+1GGzuNQtowgjABuqeGz4ty+Q2v0R+cUfe5TNPbexJLD8VsNVyFLYrOZjRK1 1TLgpirLj1F+8InU/gLviAojRD1pg7b1wBE13msrOZLadUt9yIL7NeAQpFiv1bhyEv75mbS2 EM31ZrMnsqyaz91ESo6CxWSQS4FXCf4IwVfEejgWfyL8WppJyHcP2u5+DGWtPBilIt4JuWns CJyOMlhGPWmDtgFUmzCO1p0MOmrXm5t+CI35v9DO40ykqD8QpZTeEelS5wHno2R9UY9D0LYa pfRuNqOA/3g+N4+82eM4b0JhJH6H0iGU2KvZ2RgzSE+1lsZ0TAX04mxAE3yl87WeQgFxa73I RynOaXpzwBepbECpZ/z6cIucrnT+nVS9YwHN6XfSfKGRRcHn3s+/h+QU+QjMzijW0PvCnN6i zz4KZZBI6gQNe7KvBD5IvPRWlehAHtVpcvRsdPyep3XHsXfiXzBWoPjBtuB9+Lf4a1HlkFYw G1k4+mjfiT8I3I0sgknazmeA1yBFfJqiC+ptfWgOF9cVaBbzkM7ZO3/OrPoXKSMD/Aj/IDxK 63KhdyEHOxPkHPUEbFUrID+4T5Ds3OXjUGWmRbTf+D2GdjutKvY7FXioqB9Xk6yFLhQmoGBk b5HFP9La0J0pSJn+BOlesfMo3usStMNMw2TLoHu5GAmuJOsRh2uDKDHe+WjOtoocyhbqfUfv IQXe7EHZDr9jZx64kNa/UJOQLuefNK7YjVMbRGb+C3DLsKWRmShr7CMEsybGtfWhRf3/0Xo/ pwxK1eNdCJZTPUVTW3A8bjGIIeRKEFWa1xHAa4HLkDOcN6QoKW0Axdr9ErlzTCAdO6paGIfM +z9HhW77iX486m29yDB0BUovbIo5tJqTUVku068e5NbT9mTQ6ugdtNVEn6JiAvA6lIjsbuLt VDiAAk+/h9KvTKX9Cnd6yaCj08koLOxRtFuJepwqtc3AfWiuHYMclqNcZPaj1Am6nrRMTSPy Djh0oOon78Dt00toh/BUVJ1yyCAF53QkRPcD9kUWmoloV9aq52iE01p0lH4AhRTdiXRUtuxV KRm0S5mBvN/3RNbRbdGi1Elrx68X+YAtQmN3LxJWr+AK1SiZC/wdV9c5hNJCvQOpGCIlLgIL 9PL/EYXwGB5CK87KKDpUhRzSe8102jzk9b6V07ZGHvyNPN9+pDNYAixFCQOfQL43i4FXcfU1 lvroRAvQtmjcdkX61GkoP9aWNLYQDSHh87LTFqFj3ny0EL+EThGRC4AiJgF/Q64jhrvQUXBV JD0qIk4CCzRh/gXs4nw/BNyEdFrro+pUHXQ4LYeS+01GgngSShnb5WkZJJQG0OTehHZOq522 Dk3oQVzFp6W5mLHLoXEzYzcBeXR3I2HXhcaj39N60LitQS/3RvzjF3fGAL8GTsBfsflIJHQt Fdgd7SjM2bmAfLbiHDpisSSZHNJ/en3algH7RNmpJHEo2m2Yh5dHqVta5SxnsbQLnSie1+uH uJ7gaajblvfgdysYRI6PcTvGWixJJQN8Hr+w6gXeH2WnksxZ+M3Rg6iwRTub7C2WMMgiVwWv sOrHXwzVUidZ5KXtdQDsRyEKdqdlsQTD5BjzvlcDwEUkI3NHrMmgfE3elaAPxQBaoWWx1EcG vTveELRB4CvYk0todKJy98Vn7fOxD9liqZUs2lkVC6srsAat0MkBV+I3vfYjnZbdaVks1TEp yr3HwALwQ1qbIaWtGImElnenNYhSjNgVwmIpTyel1sBBJKyiCq5uG3KUHg8HkSCzzqUWi58c pX5W5hhod1YtohMp4r3b2zxaMcZG1y2LJVaMQR7sXmE1gBTs9kTSYjLI5cHrp1VABTVbmZXR Yokjk1CF9WKd70VYQ1VkZJFzqdfqUUC103aKsF8WS5TMBe7HL6x6kVOo9bOKAaej7AbehGMv En0SQIul1eyHUhB534X12HCb2HEoSoPhHajVwNuwbg+W9JNBGVZXUpp1wQYyx5Q9UJI7r9Da hHRd1oJoSSs5VDDCm4N9CFXasSliYs404Fb8q0wepXltVd1Di6VVTEWluLzVbQoobfZWEfbL UgcTUfZE72pTQMUIdo+wXxZLmMxDacSLi8n+jtaXBbM0SAfwafwlxIZQCtv3YE27luSSRdWf veXjh1Ca5s9h1R+JJYNyVC+j1MT7TeRYZ7EkiVHApZS68ixHxSKsgSkFbAfcQWk9uIexSklL ctgT+RgWz+N7sBWZU8dE4MeUljJfifIDWYc6S1zpAM4BVuCfu4PA1cir3ZJCMsiB7lVKV6nr UfFIiyVOzERK9OL5ugI4E3sEbAt2RWZfryl4CBW4PBmrtLRETwdwIrAQ/xzNoyPgbpH1zBIJ I1EgqCnv7t1m/x6727JEx0zgWkrVF5uALyHFu6UNyQBHoBLiXitiAYX5nIWq/VosraAL+ACw hNL5+BTweuwR0IKUlj/EXwfRbL//gawzFksz2Q34G6Vqil7gJ1hHUEsRHShIdD6lk2YNyh1v 82xZwmYySl+8mtLF8km0q7IWbEtFJgJfpVS3NQQ8g1LZ2NSylkbJAaehAOXiebYZ+BrWXcFS IxngNZS3JA4CtwOHYMN7LPWTBQ5CAfrFSvU8cC/K42Z1VZa6GQV8nPJ+W5uRbsFaEy21Mgvp SjdROp+Wozqbo6PqnCU9bAV8H2VuLM4AsQ5VJdk+st5Z4s5sFP+3jtLMChuAHwHbRNY7SyrJ oK36LZQeE80KeQk255bFZSoy1iyndL4U0LHwIOzxz9JEOoBTKfXdMpNwNfBFYEZUHbREztYo zctqys+Rp1B6GGv9s7SMCcBHgMWUrp5DyPH0Uqzgaie2RbvsJZSfE4uBc7HWP0uEjALOQ5VK yq2mvcDPgf2xMYpppANZlK9Ghphyc+AF4FPY/GuWGLEF8BngFUonrckGeSNwNPYokAY6gKOA v1LeZ6+ArMsXIV2WxRJLJqDV9EnKC64CquxzHtaymERmo2Pd41Qe3wVo8ZoQUR8tlrqZALwb eIBSB0EzsVcC1wHHoMBXSzzpQrupX6M8VOUE1QDwIIqEmBhNNy2WxsmiY+D1lHcYNG0BOj7s jtV1xYEOlDftQrRbrjRum9Cx8A3Yo74lReRQ1ofLgKWU9+UyjoQPIK/nudi4xVbSiZ75+cB9 yFG43G4qjwqbfAfYC7vAWFLOOBT4+ndKU9p4Wz9wF6rqOw+7gjeDDmBnFIJ1O3rmlcajF7gZ lYkbF0VnLZYoySFBdDFKhVvpZSmgndejqDzZ65Avjw2+rp8s0jEdAXwdeITKOymjm1rk/O7u 2B2vxQIo6PVoFFC9kMqrvNdk/ieUFXUeVmlfjU6kjzoT+AOVXU+KnTx/inRTY1vfZUs5bAxT PBmP0te8BQmxaVQ+DhrF70rg30j3chdyZF2L9C3tRAey0M4GDgYOcNoU5ORbac7nUczfLcBv 0TNch56vJSZYgRV/JqMX72jgMGAnhtdlDaEd2HxUePNR4GngOXS0TBNjgDnAjujIth/acU5n +PldQM/ldqRPvAuVf7fEFCuwksUIlFPpaOS7tTfysK9FgPUhBf9C5PT4GBJoLyAdTg/aqRXC 73ZDZFGFozFI0T0L5T/f3fk62/l5N8PP5zzyo3oECaib0fPYHH63Lc3ACqxkMxWZ1Q9CsYr7 UH+xgkGUVWA5epkXovqML6Bd2mp0tFyFm88pTLLoCDwJHeUmoSPwbCScZqH7nOr8rF4XgtVo l/lv4G7gYXRflgRiBVZ6MDuRHYBDUe4uswMbT/1jbZT7eedrAQm3NUhftgpZ0AaQuT+P6xjb 41xjtPO5I5GgGYEU4J1IsE5BFruc0/8s2i1mA/Z3PRK6DyFd3h3IIdcEJVsSjhVY6WYUys00 Gx2fdkP6nZ1IfireTUgYzUdH3MeBF1Fql00R9svSRKzAaj+yyAViDnKYnOVpW6MdzzinReXn VUC7pfVoR7cUHVVNWwA8i/zW7M6pjbACy+KlAwmsCbhHti08//Y2o0/qcloOHf0yuLs3k3Zl MzpO9jvN6M3M0XKF598rne9XId3ZGtrPNcNSgf8PPRI/9EDYU3AAAAAASUVORK5CYII= iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAYAAAB5fY51AAAACXBIWXMAABcRAAAXEQHKJvM/ AAAgAElEQVR4nO3dd7wkVZ338U933zt3ZpgckTRziYMOA4IjIoKCiPLoYlwTKmtgddE18hgw LWZc111dMWBA10eXVfHx5SoooCxBQCUzxCEMAyMwOYc7t/vuH78q65wOdzpUV1VXf9+vV72m m9vUPX276vQJv/M7BUQiBWA6MDM4ZgNz6hyzg9ftBZSAyUARmBKcY0pwvq3AWPBvBdgOlIN/ NwFrq451wJrg3w3BsSk4hwiFtAsgiSsCA8AC4HBgOHg8DOwPzAKmYRXSQEplHMUqqs3AeuBR 4GHgkeDf+4J/R7GKUPqEKqx8GwL2ARYCTwOODP59KlYh9bJNwD3AXcDtwDKsQlsF7EqxXNJF qrDyo4hVUAcBJwDHAc8A5gMzgp+3Yiw4ylgrphI83kLUZdsB7A7+HSXq8m0NzjGFqMsY/jsQ /DsD615ODX5WDI4Sdl22em1WgI3AauAm4AbgWuBBYCdqieWCKqzeNhs4AjgeOBZYilVQrXyu 4Y2+JjhWACuxG/1JrEsWjidtJP7WywSiMbOZWJd0PnAg1lVdAMwNjpm0XvE+iVVgfwT+ANyB jZdJD1KF1VuGgP2AFwCnAs/Ebu49jTWNASNYS+Mx4E7neBCrjLYFR7kbBe9ACRvc3wtrlR0E LAaWYJX1/sBErOLb0/U8irXA/gz8FrgCGx9TF7JHqMLKvmnAs4EXAc/FbtZmKqh12PjOLcCt 2ED1cqxyypMZwCHAImyM7mjsbzSH5iqwu4CrsQrseqwVKRmlCiubpmJdvFdjFdVTGL+S2oF1 3W7GbrrrsMppPXZT9pMBrOt4CDaW9yxsLG8WNnbWyCjwBHAZcAk2Bra5qyUV6WGTgJOAC7Bu 2tgejrXAr4D3AE/HukVS3xDW+no38EtsrG5Pf98HgW8CJ2OfjUjfGwAOA87DbpAR6t88FWx8 6W7g34H/g3V5SskXuecVscmKFwFfwbqEYWBrvb/9CBbz9Wksbi2t2DSR1OyFdfd+iVVEjb7l R4EbgXOBo4DBNAqbc4NY6+tcrBs4SuPPYzvwa+C1RNH8IrlUwgaDz8cCHBvdGNuwgfKPBa+f kEZh+9QEbPD+w9hnsI36La9RbHbxn7HZSrV0JTcKwPOAnxKtrat3PAB8BrWksmIQ+yw+BdxP 489tGzZIfzKaxJIeNg14DRasuJv641IbgJ8Dp6NB8ywbAl4M/Aybea3X6tqNdd9fR+8ve5I+ MhV4HxZRXe/CrmDf2OdiA+76Vu4thwAfAu6l8ee7DPgAdi2IZNIs7CJdRf0LeQcWWf0S1OXL gwHgNOA32GB8vYrrL9h42OyUyihSYwh4FxZJXl1RVbBp8YuxIEZVVPkzgK1E+BHRIut6Ler3 oXguSdE04O1YjE69wdgngH8DDk6rgJK4YeBfsJZVvWviYeCd2HIikUQUgZdj6/PK1H6bbgI+ j1280p8OwGZ8N1G/xXUH8CoUDiFd9gzgUmorqnCpzL9g2RREwJInno9dG9XXSxm4HFszKhKr edgyjo3UfltuAb4GHJpa6STrDgb+FbtWqltcm7H1o09JrXSSG5OwMYdV1H5D7gT+A5vmFmnG wcD3sGun+np6HFvIPl5GCZGGjgZ+T+0SmlEshcvJaAxCWlfC8ppdR+21VQauwTLHKj5PmjIN +CT1l9E8BJyF1vdJ5waBN2N5y+ot9/k0ipiXcRSBE4HbqB1U34QNns5LrXSSV3OBz1I7PlrG ZhOfh1ryUmUGlmeqOmK5AvwP1kQX6aanA7+j9styB/ANLIuqCCdgrSp39qaCBX6+Fy1KluQM YZM8j1N7Pd6JtbY0ttWnJmLrvLZQO6j+CxSmIOk5CEtZUz0ovw34OFri03cOw2YAq5vfq7Bs klrzJ2kbxKLhV1J/JvHw9IomSTqT+mu9fo1iqiR7DsRSaddbq/pW1EXMrelYRHF1Mr31wAfR 5gKSXSXg/dhek9VJAy9Ei6lzZwE2A1O9LOJOtJZLesdSbIKourV1NdYSkx5XAF5IbVK9XVgY w7T0iibSlinAl7Fr2J1FfBxL46wuYo8qYs3ozdQGgb4NBeNJ7yoCf0dtsOkWLH2zru0eMx34 PvVzbR+TXrFEYnUk9fcO+BEKNO0Zc7E8Q27IQhmbadknxXKJdMPe2M5L7vVeAa4C5qdYLmnC YuB2/G+b7cA/odgqya9BbOPd6qVld2EbvUoGHYftxut+YBuAM7A+v0ieFbB9MNdTGwx9Yorl kjrOwCon94Naia0TFOknxwEr8O+FjcCbUiyTBIpYfqod+P3324CnpVgukTQdDtyMPxi/Azgb 9TZSUwDOoTbd7BUob5XIHOAyauMPz0WxWokbAD6KHzxXxkIZlKVRxEzDlu64M4gjaBIqUSVs 3z93TWAZ+CZKXSxSbQBbQ+umqhkFvoTWz3bdELZdkvvHLwNfDH4mIrUmYF/y1ZXW1+ix3Fq9 1JctYd8K7yYaOAy/KT6GVVx5MQXbOXoetu2Tlloko4zFMq3GtpXfmm5xYlUAPoUt3Qm7g2PA 17HMuqMplSuXBqj9hhjBMobm4WYuYqvt3wlcCazBskuOYO9ZR3LHSPC3XxN8Fu/B8qTlYXat iE1UuWO/4Ze+xrRiUsAG2N0xqxHyM9txIPBV7Fu9OgOqjvSPcvDZfBVLXdzrCliLyp1dH8UG 4vNwP6Wq3jfCbqxl1et/3CHgLcBj1C5e1ZG9o4JFjb+V3h8vDUOCRojeX9gIyENLMjVn4X8T lLGuYa93AydhOY3cgFcdvXHsxCZ+emqwuo4itlmrO8yyCwsulTacgX9Dh7OBvV5ZTQF+gLp/ vXyUgf8AptLbCsDn8Cutndi+B9KC4/DXBoZxVnloin+Z2u2bdPTeMRp8lr0+NDEBC29wv0A3 oQXTTVtMbdaF75OPoNA3ULuUSEfvHjuDz7TXDWAR8e5Y6l+wBIEyjrn4+awq2NrAPCy3mQ8s J/2bTEe8x3LykShvKnApfqV1F/l4b10xHcsU6l4Mt5GPhcwF4JOkf3Pp6M7xCXq/awi2YPom /Pd2FUq3XKOIdfvcfvRK8pMiZg7wAOnfWDq6czwQfMZ5sAiL8g/fWwX4Mb0/2RWbAra7jXsB bCBfyfdeix/zoiNfxwiW7TMvjqM2c2keYh9j8UL8rbi2YyENeVHCBjTTvql0dPf4FvkKunw1 fo74LcBLUi1RBizAoofDP0oZWyKQpw9+InAr6d9QOrp73BJ81nlRwCLf3WGax+njHaan428f X8G24srbIsx9qQ3T0JG/YyX520ZuALgE/x69hj4dhL8Afwp1Gfn7wMHya1ePB+jI37E++Kzz Zm9qt877Nn02nnUmfvaFTeR3R+Yl+GN0OvJ5bCa/ewAuwV95sht4W6olStBhWBRt+OZ3ke83 fziwjvRvKB3dPdZhIQF59Sb8VRpPkp+wo4YmAr/H/6D/nXzHeDwFeIT0bygd3T1WYN2nvCpi if7c93wtvZ+1Ylwfxp91uBPb2SPPhqiNHtaRv+Mmen9x/p5MwZ/xLpOfKP8aJ2CxHOGbXQ8c m2qJklHEWpFp31A6unt8hXyF4zRyDLCW6H1vA05KtURdMANbF+h+wB9MtUTJejl+1lQd+Tp2 AS+jf7wX//0vA2alWqIYhS0MN4Th1/TXnmjTgbtJ/8bS0Z3jLvKRUaRZJeAXRO+/gkX652Is +kT8EP9V2C4k/eYclLs9j0cF+AD9Zxh/MmkHcHKqJYrBNPyu4Ci2ELgfzQTuIP0bTEe8xx30 aeQ38Ar87LnL6PG/xSeJZgUrWDMyb0tvWvFSbHPOtG8yHfEcW4HT6V8DwM+Ieg5l4LP06Kzh 0fg35xPAoamWKBs+gVLN5OHYDXwcGcYPBN8GPDPVErVhEn6AaAWbWRALnv0yqrR6+RgJPsM8 ZWfoxNn48ZXXApNTLVGL3onft/0f9OG6JmDfzlpj2HvHVqyVnIdNUeIyhO29EP6NylhSzp4w Dz/H1SZgaaolyqYB4G+Ae9Aehb1wlIF7sXHIfgrJadZR+Aukn6RHsq98Bf+DPj/d4mTefOBj 2BSxKq7sHeXgs/ko+V4rGIdP4//tvkHMA/Bxj+Y/A7iSKIjuYeBZwOqYf08ezQGeh0VMPxOY jXU7SmRj1mUMa1nEPcu7Gxs+yMp7LGNjVOuAPwK/whJNrk2xXL1iDnA9UZzlFiwF+g1x/YI4 L5Ii9uGeFjwvA/+AJfuS5hWwSmFvrNKaTHZu5jcA74j5vN8Cfkh23uN2rLJ6gihnmzTvTOC7 RFHvv8MqrXJqJWrg5fhdmuvRwGTefJj4u1wfSfQdSLcNAlfjd6kzt6PQNPy0EzvJQZi+1FCF Jc04AVuqE37Gy7AECB2LKx3G64jSw44BP8FqWRHpP38AfkTUnX4qlrE0E4bwd4rdQn8ubu4H amFJs4axkKbwc36UGIJJ42hhnQUsdJ7/AFgew3lFpHc9jA2+h/Yj/gmbls0C7iOqRdei9YJ5 phaWtOIgLKQp/KwfBOZ2csJOW1hvJur+jWGtq/s7PKeI5MODWCsrHMsaJsUdsqZSuwRnv7QK I4lQC0tatTf+RsJP0MGMYSctrLdhW1iFvg481sH5RCR/nsBSpIfmAW9v92TtVljTsO5gGJ38 JHBhu4UQkVz7LvB48LiARcO31cpqt8I6DVgcPB4DLsZmBUREqq3Ell+FY1mLsEwlLWunwioA 7yZqXY0CX2vnl4tI37gAW1QOUR3Scv3TToX1XPwUqD8HHmjjPCLSP1YC/+U8Pwo4pdWTtFph lbBsomECs51YzSkisidfx7JhgNUhZ9NiMsRWK6zDidLHAFwH3NjiOUSkP92MpUsPnUo0Ft6U ViusNwJ7BY/HsOyiu1s8h4j0p1GijMRgm9Wc2coJWqmw9sLfBPUB4Let/DIR6Xu/x/YxCL0a C5NqSisV1ouBfYPHY8D3Uesqj4awGJmZVccMurPz0cRxft9QF36fpGsU+B5RK2tvWghxaDYt 7QA2GxieeCOWq/2+Zn+RZN4kLBj49ViFUX1tjGE5u+fF/HtXY4vm6/2+DcCPgYuwhHCSDwdh +fJnB89/C7wEq8xicRi2o2u4HujnZCMHt8RjIhbYl8Vde8pB2dTaypeLiT7jHbQ4+L4n5+Ff RKfHeXJJ3SvJ9k7UI8AruvbuJQ0vxP+MPxfXiSdhaSLCEz9A9ndxHsTKOIQ2vdyTArZzTYX0 K6ZGRyUoo1r14xvArvmJxL8dW9wmYBvThp/xCqIIhIaauZmfBezvPL8YCxjNkhI2eHcy1rQ8 AEt/U8FSW6zA4sX+RLQ7rZgBbIA7y5VBASvjAJroqTYTOBY4DliAJdUsYqnKVwJ3AldhCQpi GyOKwQg2Pnle8Hwf4Hjg8k5PfAFRLbgNC6nPiknYYN2v8XfpaHSsB74DHEN8G3D0ukFs05C0 W1F7On5C9lsNSSlimxZ/Gz+jZ6NjFzaw/WLsnsmKJVjFGpbzO52ecCp+d/AWsnPRHAH8Bvsw Wr34N2E5ejpK15oTqrB6y1zg34DNtP43DCuuIxIvdX0DwJ+JyreCaNf4tpyC/4Y/1ln5YlHE omPX0NkNUAHuApYmW/zMUYXVO5YCd9DZeGMFu3fOJBu9jHPwy/eSTk52oXOiUWKeemxDCctW uJX4boQVwHMSfA9ZowqrNxyPv51ep8dWbBebEuk6BH+G+qJ2TzQNG7QLT3Qj6W89/3rirazC YxX9u9uPKqzsOxR//4S4jm3AGQm+j3oGsSQK7r04u9GLx2sSPpsoZ/sY8EuiBFxpOAI4nyam PtuwD5aEsKP+s0gXTMcmvvbpwrknA18g3Z7TbqxuGQuez2ecHs94FdaLiMIedgCXxlG6Ng0B nyFay9gNzyfFLYhEGjgLOKmL598Xu7fSXElwKdbaA+uintrqCYaAW4maaXeTbnP8hTQXttDp sQKr4fuJuoTZNR+7Jrv9t91OG5VEjErA7U55ltEgOL1RC2s//Gbi70g3YO/vSSa6/gDg5Qn8 HpFmvAK7JrttEh1svRWDMnCF83wRsLDeCxtVWC/Aj4K/LJZitecAbIYkKS8l+0uPJP8mkeya 3Wfjr2hJ2mVE41glrA6q0ajCcpuH67AlLWk5inFmDWJWCH6fAkolbXOxazGpJVNzSHcVy61Y fFjoRfVeVK/Cmo2/K86N2Pq7tBxJsrEiU7F8PSJpOogWMnHGoITda2nZCFzvPD+aOrnX6lVY R+APPF+B9THTsiDh3zdEuk1jEbBrMOm4x6TvNVcFq2vCbmHYwvTUq7COxw9nuKYbpWtBkt8y YN80UxP+nSLVppB8FHracYjXEG0DVqJOPFZ1hVXEUlWE1uMnjE/DAMmmPimgHFqSvn687u/H 0mWHjqWqjqou4BD+YuCbyV7uqySU6J+ZwkHSX0/WjPAz6YWyxqFf3qdrBJvgC7umx2CzpWFQ aU2FdRD++NX19KdzgLekXYgE9cKY3fPpr+txVtoFSMmNwN8Gj2dj6yhvDX9YXWGdQNQMHcMW JfajfejO2i1p33TSH2OR7gsXQof10Ik4FVb1GNZxzuN1wPKuFk1ExPcgls455NZJXoU1hKVd Dd2FDbqLiCRlI7aWMHQ0Tlpnt8LaB3/86haylbReRPKvDNzkPJ+LrW0G/AprIbYzCVgf8lZE RJIXZm4AG7ccDn/gVlhPc56PoG3oRSQd92MbZoANvv910wy3wnLXEe1EA+4iko7l2CqbUE2F VcRaWKHHSHfBs4j0ry1Y4sLQYoK6KqywBoCnOi+4M5FiiYjU59ZBiwgWgocV1gL8oDxVWCKS pjucx3sBB0NUYR1e9WJVWCKSpmVVzw+HqMIadn5QwaJNRUTS8hB+HOhC8LuEoY1owF1E0rUZ f6XNQqjfwlqDk85BRCQF24DVzvOFYBVWAT+9iCosEUnbdvxNKfYFSkVsdtDNvbOCdHO4i4hU 8GOxZgIzi8EDN2/6ygQLJSLSyCPO42nAjLDCCmOwxtAMoYhkw0NEi6CnAbOLWBrSMPPoGH7y LBGRtDyJdQ3BxtvnFLEdX0NllLRPRLJhPf54+tzqCquCYrBEJBs2ErWwIOgSqsISkSxah19h 1e0Sbky0SCIi9W3CX55TU2FtIcr0JyKSpuoe35xwljC0LtnyiIiMy926fk4Y6R7S+JWIZIkb tTCriCXHCu1ARCQ7RpzHA0Wg5PyH3QkXRkRkPG6dNKEITHb+g1pYIpIlO53HE4r4W31pp2cR yRI30n2gCExx/sP2hAsjIjIet06aFCbwCykPlohkyZjzuFDdwtqacGFERMbjZj/eq9jwZSIi GVPEb1VNafRCEZEUuHGi24r4fcQSIiLZ4Y6xj1W3sCYjIpIdk5zHO4r4+WbUwhKRLBlwHo8W 8eMc1MISkSyZ6DweKVIVSZpwYURExjPoPB5RC0tEssytsEaLWBrS0IyECyMiMh43wej6IlUZ /RIujIjIeNw6aW11hTUVmJBseURE6gp3pg+tq66wSlUvEBFJy3T8icA11RVWdY0mIpKWWfj5 +tYW8XfKUYUlIlkxA7/CWlcE1jj/QV1CEcmKWfirb9YWsW10wuDRArB30qUSEaljPlELq0Iw hrWeKBarAByYQsFERKoNE2Vr2EzQJdwYPAktSLpUIiJ1LHQebwY2hpHu7u6qC1DWBhFJVxG/ wtoAbAjTyzzq/GAufpY/EZGkTQLmOc9XAeVwQGuF8wNVWCKStin4FdYKiEbgH3F+MBMtghaR dE3DwhpCKyCqsB5yflAEDkqmTCIidS3EX5azAqIK696qFy/ufnlERBo6our5vRBVWA/j58Va kkSJREQacOug7cByiCqsUeAe5wXVtZuISJLcOuheYAT8sPe7nBfsjwbeRSQdU7Ao99Aygt29 3JXQtzuPJwKHdL9cIiI1Dsbfj/DO8IFbYf21FsOyji7qfrlERGocBgwFj8doUGE9gq0rBFtw eGQiRRMR8S3BX/T8cPgDt8JaBax2nh+N9ikUkWSVgKXO8zXAY+ETt8LaBdzkPF+MkvmJSLJm 4MeB3oKzd2qx6sU3OI/noIF3EUnWMH4S0RvdH1ZXWNc6jwvACV0qlIhIPc8hGr8CuMb9YXWF 9SDwpPP8WV0qlIhIPW6ds56qZYPVFdZO/HGsZxBNL4qIdNMgfoV1E7DDfUF1hVUB/ug8n4Xi sUQkGYfib03/J6LYUKC2wgL4A7a2EGAy8NyuFE1ExHcCVueA7eT1h+oX1Kuw7sCPxzqlwetE ROJSBF5ANOC+Bri13ouqrQX+7Dw/DsVjiUh3TQeOd57fhj8BCDRuOf3WeTwHP/JURCRuR+Hn cP9NvRc1qrCuIBrHAjgtpkKJiNRzGlF3sAJcXu9FjSqsR/HzY52CTTmKiMStBJzqPL8Pfyev v2pUYe0CrnaeLwCeGkfJRESqHAoc6Dy/mqr4q9B4s3+/xQ9veHEsRRMR8Z2GZRkFC2eoO34F 41dY1xON0heAv8ES+4mIxGUQeCnR+NVq4LpGLx6vwtoIXOo8X4rfbBMR6dRCLHQqdCWwrtGL 9xQQeonzuAS8rO1iiYjUein+hN5PxnvxniqsG3DSkwJ/i2YLRSQeJeBVzvPHGKc7CHuusDbj x0MsAp7WVtFERHyL8KMPLsff0LlGM2sEfwrsDh5PAl7RVtFERHwvI5odHMXqmrHx/odmKqzr sQ0qwEbyX4tyZIlIZyYAZxDNDj5OnewM1ZqpsHYA/895fggW+S4i0q4TgcOd5xcDW/b0PzWb NubH+JGnb26+XCIiNd7iPN6F3yhqqNkKazlwlfP8ZLSjjoi0ZxjLfRW6Brinmf+x2QprFPgh FjYPtneYBt9FpB0vA2YHjytY62p345dHWskk+itsYAxsoOzNaGdoEWlNCesOuktxftHs/9xK hbUVGxgLHYrfrBMR2ZOT8GM5f4rFezal1VztPyTaNroAvAe1skSkOSWszghbVzuAi1o5QasV 1l34qR9OBJ7Z4jlEpD8dg03YhX4H3NnKCVqtsMrABUR5siYB72zxHCLSn/6BaBuvUfy6pCnt bN91FXCz8/yV2DSliEgj+2OrZEJ3YHtHtKSdCmsM+ArRmp8JwLvaOI+I9I+ziZb0jQFfJQqT alq7G6ReCtwdPC4ArwMOaPNcIpJv+wJvJBpsvx/4ZTsnarfC2oSN7oetrKcAf9/muUQk396C VVpgdcYPgA3tnKiTLei/DTzhPP9HYJ8Ozici+TMPeJ/zfA3wjXZP1kkM1WasH/o5rKk3FYux +FAH58yK7cBI2oWQvjaBaEatl/0jtpQPrHV1AbZfRFs6Dfr8NtbcOwSrtN4a/LcHOjxv2j4P fD/tQkhf+zvg02kXokPDwNuJxq5WAN/s5ISdVljrsObdl4Pns7G4rPc1/D96w2Ysv7RIWppe rpJh7wDmOs+/ha0dbFsnY1ihb+JvK/024OAYzhuqsIe0qTEbo43pVpGY9fp1vxCrsEKPYd3B jsRRYe0AvkT0x90LOBdbNxSHrTGdp1kVYFvCv1Ok2jbsWkxSXPdaEfgINq4NVjd8OY7zx1Fh AfwIWBY8LgCvB54T07mT7pqNAH9J+HeKVPsLyU/8xHWvHYcfd3UfFsqQKa/CmpRjwXEd8exh +FpsvdFYQsca4KAYyi3SiYOxazGp634UeE0M5R7Alu+F561gDZjMKWH7irl/gDhyvx+GDe4n 9cFdTbT1kEhapgDXktx1vxbLcdepM7DsoeF5ryK+4aHYHYvNboSFXY4/S9COIpaGIokPrYKN v4lkwblEg+/dPq6k8yGi2cC9zjm3AMd3eM6uuwD/D/HZGM75Wqw/3+0PbTU2uyGSBcMk0y0c IZ7u4Cerznsh0ThWZj0Fy/0eFnoj8PQOzzkVGxPr5rdNBfhih+UUids/0/3r/lo6HwY5Aljv nHc1sF+H50zMe/AH4H9H57tFn4Ituu7WB7eMaIGmSFbsi12b3bruN9H5xsgTgMucc5aBczo8 Z6ImY3uNuW+g08ykBWydYje6hpuJLwxDJG7PwR8bjusYwe6pTrttZ+E3UG7A4jF7ylIs+C18 E4/TebjARKyJHGeYw2YsZkQky95AvJXWKBbwPbHDci3A4rfC8+7A4rB6TgFbvBnWvBXgEjqP zZoA/BM2A9HJB1YBVmGbOmZ+YFD6XgE4HbtmOx3T2gqch91LnSgB/+mUpwx8gR6+n6ZjuZvd Wv2VMZx3ANt5ejntfXijWMzYMTGURSRJR2O50NvpZVSwe+aVxLM93+n4MVd3A7NiOG+qnoc1 E8M3tRI4MKZzzwX+L3AP1h8fr/IqY13Ua7DI206/XUTSMgELQ7gau6bd8aN6ldQIdo+cS+dx kaEFWNKD8PfsJIGNlZNoupWAr+Hnxflv4OXEtzp8NjZmdgpwJBZLNS04/3osP9efsNnKO7AK VKTXTcKu95Ox/UEPxu6FIjbetQK4DQsKvQlbMRKHErYL/KuC52PA97B7PBeZTmZiGya6Nf/7 u/S7CtgfdCA4SvRwn1qkSUle9+/Cv5fvwSrKXHke/qzhOqxVJCK94yj86PvtJNAVTEMB+Dh+ f/s2tNBYpFdMxrqW7rjwp8hxD2YSfkDpGJbYK668XCLSHUXgfPx793rysVHGuA7HtgdzZxfO TLVEIrInr8fu1fC+XYOtH+wLb8WP39iIzXaISPYsxs9JN4qfrz33CljqCbd5eTuwd5qFEpEa 84Bb8O/Vi8jxuFUjM7DAtzDYswL8nHjSKotI5waA/8K/R68nB9Hs7ToQP3dWGfgofVh7i2RM Afgg/qz+auJJo9zTXoy/kHk78WQ/FJH2vQJbJB3el9uwRAF9L8xz5faR19OjKSpEcmAptimF e09+HPV8/qqE7W3oLl5egYVAiEhyDgEexB+3+inxZHfIlZn4+5mNATcDc9IslEgfmQX8Ef8e vJYcrhOMy3zgLvzUGJdhmRdEpHumAL/E7+XcC+yTZqF6wRIsq6JbaV2ImqQi3e9o/RwAAAeU SURBVDIAfB2/snocJbhs2olY9Lsb7nABSronErdBbD2vm8F0M5ZjS1rwJvxMpaPA59FMhUhc Ctjmp25ltRN4W5qF6mVnA7vwK61Po+wOIp0qYqEKbmU1gu0pKm0qYnmo3b0IR7BNGtXSEmlP AXg3/n21G/gEFmIkHShg23q53wS7gPeiSkukVQXs3nFTxYwCn0E9l9gMYps+Vve1z0F/ZJFm FbGWVXVl9RU0oRW7AWz3HXfqdQQb01JLS2R8YYpytxtYAb6FMqR0zSSs0nJbWqPA59A3hEgj g9TOBo5ildWkFMvVFwao7R6OYhWZgktFfAPUxlmF3UC1rBIyiA3Eu83bMvaNMTW9YolkyhQs gt2trHZjA+zqkSSsgIU8uHFaFeBStGBaZBa1awNHsNAFTVSlpIgFl7qzHhVs77RFKZZLJE2H YFkX3MpqJxYUqjirDDgT2ISfFuNhlARQ+s9SLJ+Vey9sRsttMudE4C/UZi59NQp7kPwrYGmN 11KbdUELmTPqSPx8WmGO+HPRDKLk1wC2YYSbgz3MZ6UUMRk3H8tc6n7LlIFL0L6Hkj/zsK24 3N1tKlimUCXf6xEzgR/jf9tUsM1al6RYLpE4LcY2OXW/nMewHOxKa9xjSsCH8bcQGwM2YLm2 NLUrvaoIvB5/+/hwK66Po+GPnlUAXoINPFZP8X4JC6wT6SWTgfOpDeVZje0bqAmmHDgQuAb/ 22gMuBUNSkrvOAqLMay+jq9HOzLnzkzg29jSBPfDXovlB1JAnWRVCXgXsAb/2h0FLsKi2iWH ClgA3ZPUfkv9AhhOr2gidS3ABtGrr9c1wDtQF7AvPA2b9nWngseAR7DgOw1aStpKwOnYDuju NVrGuoBHpFYyScUkbCHoNmqb2T9DrS1JzwLgP6kdvtgOfAobeJc+VABOApbhzyJWsGU+ZwND qZVO+s0E4CzgMWqvx3uAF6AuoGCDlt/C3wcxbH5fgc3OiHTTEcBl1A5T7AS+gwJBpUoJWyS6 jNqLZgOWO155tiRus7H0xeup/bK8G2tVaQZbGpoJfJbasa0x4H4slY1Sy0qnBoAzsAXK1dfZ DuALKFxBmlQAnkn9mcRR4GrgBLS8R1pXBI7HFuhXD6qXgRuwPG4aq5KWTQbeT/24rR3Y2IJm E6VZC7Gx0u3UXk+rsX0290qrcJIf+wDfwDI3VmeA2ITtSnJQaqWTrBvG1v9tojazwhbgQmC/ 1EonuVTAmupXUttNDL8hP49ybklkHjZZs5ra66WCdQuPR90/6aIS8BpqY7fCi3A9cB5wQFoF lNTti6V5WU/9a+QeLD2MZv8kMTOAdwOPUvvtOYYFnp6PKq5+sj/Wyn6M+tfEo8D70OyfpGgy 8AFsp5J636Y7gR8Ax6I1inlUwmaUL8ImYupdAw8BH0L51yRD5gIfAZ6g9qINs0H+GjgVdQXy oAScAvw39WP2Ktjs8iewsSyRTJqBfZveTf2Kq4Lt7PMBNLPYi4axbt2dNP5878W+vGakVEaR ls0A3gj8mdoAwfDCXgtcDLwQW/gq2TQBa039GMtDVa+i2g3cjK2EmJlOMUU6V8S6gb+gfsBg eNyLdR+WoLGuLChhedM+irWWG31u27Fu4YtQV19yZADL+vCvwCrqx3KFgYR/xqKeD0HrFpM0 iP3NzwFuxAKF67WmytjGJl8Fno6+YCTnpmELX39DbUob9xgBrsN29V2MvsG7oQQcji3Buhr7 mzf6PHYCl2PbxE1Lo7AiaRrAKqLPYalwG90sFazldTu2PdnzsVgeLb5uXREbYzoJ+CJwG41b UuHY1MrgtUtQi1cEsEWvp2ILqlfQ+FvenTL//1hW1MVo0H48g9h41DuAS2gcelId5PldbGxq avJFlnq0himbpmPpa16JVWLzadwdDAd+1wJ/wsZersMCWTdi4y39pITN0A4DzwGeFRxzsCDf Rtd8GVvzdyXwE+xvuAn7+0pGqMLKvtnYjXcq8FxgEXseyxrDWmDLsI03bwfuAx7AupZ5MgU4 GDgM67ItxVqce7Pn67uC/V2uxsYTr8O2f5eMUoXVWyZiOZVOxWK3jsYi7JupwHZhA/wrsKDH O7AK7SFsDGcb1lKrxF/sjhSxHY6mYAPdC7H850uCf4eDnw+x5+u5jMVR3YZVUJdjf48d8Rdb ukEVVm+bh02rH4+tVTyG1jcrGMWyCqzGbuYV2P6MD2GttPVY13IdUT6nOBWxLvAsrCs3C+sC D2OV00Lsfc4LftZqCMF6rJX5J+APwK3Y+5IepAorP8KWyKHAiVjurrAFNp3WP+twcL8c/FvB KrcN2HjZOmwGbTc23V8mCozdFpxjr+D3TsIqmonYAPggVrHOwWbsBoLyF7HWYrHN8m7GKt1b sLG8a7CA3HBRsvQ4VVj5NhnLzTSMdZ+OwMZ3FtH7qXi3Y5XRMqyLeyfwMJbaZXuK5ZIuUoXV f4pYCMTBWMDkQufYF2vxTAuOtOK8KlhraTPWoluFdVXD415gORa3ppZTH1GFJa4SVmHNIOqy zXUeu0c4njQhOAawrl+BqPUWpl3ZgXUnR4IjHDcLu5ZrnMdrg+frsLGzDfRfaIY08L+fqEAK CJWblAAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAYAAAB5fY51AAAACXBIWXMAABcRAAAXEQHKJvM/ AAAgAElEQVR4nO2deZhcVZn/P1XV3dlD9rBlY00ggOybbMqmODoqIyozOo4yKjoiyqiD44ob 4jK4jA6Ogs7IMAL+EBcU3NhRZA+ELSSEJJCVpEOSTndX9e+Pb92pe6uqu25V3eXc6vfzPOdJ VbqWc0/d+973vGsOw6iQA3YBppbHdGBGnTG9/LoJQAEYD+SBieXPmFj+vJeAofK/JWA7UCz/ uwXYUDU2AuvL/75YHlvKn2EY5NKegJE4eaALmAcsAhaUHy8A5gDTgMlIIHWlNMdBJKh6gU3A c8By4Nnyv0+U/x1EgtAYJZjA6mzGALsD84EDgUPK/x6ABFKW2QIsBR4FHgKWIIG2GtiZ4ryM GDGB1TnkkYDaGzgBOBY4ApgNTCn/vRmGyqOItJhS+fFWKlu2HcBA+d9BKlu+l8qfMZHKltH7 t6v87xS0vZxU/lu+PArovGz23CwBm4F1wF+Au4HbgWVAH6aJdQQmsLLNdOAg4HjgaOBIJKCa +V29C319eawAVqILfS3aknn2pM1Er730ULGZTUVb0tnAXmirOg+YWR5TaV7wrkUC7E/AncDD yF5mZBATWNliDLAncBpwOnAUurgb2ZqGgH6kaawCHvGNZUgYbSuPYhwTb4MCMu5PQFrZ3sBi 4GAkrOcAY5Hga3Q+DyIN7F7gN8AtyD5mW8iMYALLfSYDxwFnAiehizWMgNqI7Dv3Aw8gQ/VT SDh1ElOAfYGFyEZ3GFqjGYQTYI8CtyIBdhfSIg1HMYHlJpPQFu9NSFDtxshCagfaut2HLro7 kHDahC7K0UQX2jrui2x5xyBb3jRkOxuOQeAF4CbgemQD6411poaRYcYBpwDfRtu0oQZjA/AL 4ALgULQtMuozBmlfHwBuRLa6Ruu7DPgu8Ar02xjGqKcL2B/4DLpA+ql/8ZSQfekx4JvAq9GW p5D8lDNPHjkrzgQuR1tCL7C13tr3o5ivS1DcWlqxaYaRGhPQdu9GJIiGu8sPAvcAFwMvA7rT mGyH0420r4vRNnCQ4X+P7cAvgTdTieY3jI6kgIzBl6IAx+EujG3IUP6v5df3pDHZUUoPMt5/ DP0G26iveQ0i7+JlyFtpmq7RMeSAk4FrqeTW1RtPA5/DNClX6Ea/xWeBJxn+d9uGjPSvwJxY RoaZDJyDghUHqG+XehH4KfBazGjuMmOAs4DrkOe1ntY1gLbvbyH7aU/GKGIScCGKqK53YpfQ HftiZHC3u3K22Bf4KPA4w/++S4APo3PBMJxkGjpJV1P/RN6BIqtfg235OoEu4FXAr5Exvp7g WoPsYdNTmqNh1DAGeD+KJK8WVCXkFr8GBTGaoOo8ulAmwo+pJFnX06gvxOK5jBSZDLwbxejU M8a+APwbsE9aEzQSZwHwVaRZ1TsnlgPvQ+lEhpEIeeD1KD+vSO3ddAvwRXTyGqOTucjju4X6 GtfDwNlYOIQRM0cAv6JWUHmpMl9F1RQMA1Q88VJ0blSfL0XgZpQzahiRMgulcWym9m65FfgW sF9qszNcZx/g6+hcqda4elH+6G6pzc7oGMYhm8Nqau+QfcCPkJvbMMKwD/ADdO5Un0/Po0T2 kSpKGMawHAb8ntoUmkFUwuUVmA3CaJ4Cqmt2B7XnVhG4DVWOtfg8IxSTgU9RP43mGeA8LL/P aJ9u4B2oblm9dJ9LsIh5YwTywInAg9Qa1bcg4+ms1GZndCozgc9Tax8tIm/iyZgmb1QxBdWZ qo5YLgF/RCq6YcTJocDvqL1Z7gC+g6qoGgYnIK3K770pocDPD2JJyUZyjEFOnuepPR8fQdqW 2bZGKWNRntdWao3qN2BhCkZ67I1K1lQb5bcBn8BSfEYd+yMPYLX6vRpVk7ScPyNtulE0/Erq exIXpTc1I0neTv1cr19iMVWGe+yFSmnXy1V9J7ZF7Fh2QRHF1cX0NgEfwZoLGO5SAD6Eek1W Fw28Akum7jjmIQ9MdVrEI1gul5EdjkQOompt61akiRkZJwecQW1RvZ0ojGFyelMzjJaYCHwN ncN+L+LzqIyzbREzSh6p0b3UBoG+CwvGM7JLHvh7aoNNt6LyzXZuZ4xdgKuoX2v78PSmZRiR cgj1ewf8GAs0zQwzUZ0hf8hCEXladk9xXoYRB7uizkv+870E/AGYneK8jBAsBh4ieLfZDnwa i60yOpdu1Hi3OrXsUdTo1XCQY1E3Xv8P9iJwLtrzG0Ynk0N9MDdRGwx9YorzMupwLhJO/h9q JcoTNIzRxLHACoLXwmbgbSnOySiTR/WpdhDcvz8IHJjivAwjTRYB9xE0xu8Azsd2G6mRAy6i ttzsLVjdKsOYAdxEbfzhxVisVuJ0AR8nGDxXRKEMVqXRMMRklLrj9yD2Y06oRCmgvn/+nMAi 8F2sdLFhVNOFcmj9pWoGga9g+bOxMwa1S/IvfhH4cvlvhmHU0oNu8tVC61tYba3YKCBh5Vdv B9APYakIhjEyOdTYop+gg+pbmKYVOV3U3iH6UcVQE1aGEY48clT5bb/e9tBsWhGRQwZ2v82q H/N2GEYr5FCvAr93fRAZ4u16apN6d4QBpFnZ4hpGa3ghQf7toacEWJxWG5xH8E5QxGxWhhEF eWTT8ptZdqLgUqMFziUYwe55A01YGUY05IAvEBRafajvgdEExxLMDfTirCx0wTCipQd5Cv3e 9y1YwnRoFlNbdeEqLCjUMOKiC0XE+9N41qACgcYIzCRYz6qEcgMt3cYw4mUS8CuCQutRHCsC 6JKnbRfgWuA03/89BJwOrEthPgVgLurCuxvKy4oqwG4IeAkd17PAU8h2YCgeaAHqAjMbrbt5 rsLhVWVYD6wCnkB13sMyA/g1wTLifwTegEw0Rpk82vb599ErSadEzAzgPai77lpq+xhGOYro RHgE+CywkNF5ceaAOcjV/mdgA7Vt2m2EHyUkqJ4EvgMcRfib7UJgedVnXY05u/6PHOpu41/w F0m++N4k4H1I46luYZ/USdaL0o/mxnysLjEdBQa/QG0zBRvRjO2o7vtBIX+TY6mtXGqxj2XO INiKazsKaUiSOahVvT+QLq1RRLaDk+j8E+QQpMmaNhX/KKFt4t8STlt6E8Ea8VuB14R4X0cz D9Wc9l+snybZbdEBqEKpa3f39cDZMR532hxHbSlfG/GP7cBHaLxFzKHId/9u43lGcYfpXQi2 jy+hVlxJJmHuQW2XHZfGiwSdEJ3CQZiwSnNsBy5s9CMhoXY9wWv0NkZpz8NvE9RqlpBs38Dx wHW4p1lVj6forLvaNHTSp72uo32EDQ7dldqb+vfofHNFgLcT9L5tIfmOzO8kmFTt6igBV9IZ NYu8yhtpODVs1J5XdwNTRvzFxMEEM08GgHeFeF9HsD+KovUOfifJH/xE4DGSP0laHb3Ic5N1 FiAvbNrraUOjCLxjxF+swtsIFiJYyyjoTDUW+D3BRfsmycd4vJVseaZKwPfJfizMx8nWuo+G cRcwYaQfrUweFfrzv/d2OrzE8scIbgceQZHMSZInG7ar6vEcSl3KKj3APaS/jjaC4yXgiBF+ Nz8TgQd87y0Cn6RD7VknoFgO72A3AUenMI/ZwDMkf2K0O/qAU2NYj6SYC2wj/XW0ERxFlGEQ lsNRJoL3/m3AKU28vy2SineagrZ+E33/9yXgTwl9v58ZKJwha/SgmLGssgiruOEieWBfwsuC +4DP+Z6PR9f2tIjnVZckBJZX2fBg3//9CvhaAt9dj9lk88LJAXumPYk2mEv2bXCdyjyauya+ CfzM9/wAEqoEnITAejkKIfD2uWtQEfzBBL67HpNS+t4omNj4Jc4ykQ61dXQAE2hOFhRR4OnK 8vMc8iKeFPG8aohbYE0GvkHFk1AEPoyCIdMiy/FMWdZQRmMViqzQynm1HAmtYvn5WHStxxoF H/dJdCGVDPEh4Bco1N8wjOxzI3ADurZBdsqLiFGTjlNgHQb8s+871qGky4EYv9MwjOQYRNf4 C+XneWTuOTKuL4xLYI1DQWZeQNoQ8go+GdP3GYaRDsuR17BUfj4e+Gr538iJS2D9A8HEyttQ 1xvDMDqP76MMFo/jUNXeyIlDYM1CdXQ8Q14vUhutZrlhdCY70TW+ufw8D3yUGKqvxCGwPk5w ot8F7o3hewzDcIcHUX9Dj1nAJ4jYAB+1wDqCYNfY5Wg/axhG53M5wZClc4FjovyCKAVWHnV+ 8XoIFlH0axotugzDCM9Q45eEYgPweSqxWZNQlktk8YNRCqzXoYYSHn8Gfhjh5xvZxkt8N9xj KxUvX7tcDdzpe34KEfYmiEpgTUZlJrzP2wn8K+pCYxgA92MxeC4yhErG7Izo8wbQte852fLI lhWmsmlDohJYb6GS3DwE/AS4NaLPNjqDh1ArNdOy3GIV2glF+bvcCfzY95kHoFxDJxhDsFPs VlSuwlXeSPo1iFod/xHDeiTJAtT63Gq6pz9KqG3X60b6wdpgAerV4H3fc0QQTBpFIvB5wHzf 8x+SbnKz4S7LgVcBr0fFCGcSdHuPQ9U9slj+x1WWoDr6frYhjfe/kCCJg+UooNRrJ7YnCiZN q6wUoKJdT1CRohuA/dKcUAhMw3KDPPIedfnGfsBG0l/nThrn11nnpKp+7I2iBLy5LKPNMt/t 2rDeQWX7N4S0K8sXNMJQQlvDQd+IylNlVBiidp2LI74jOpYhLWuo/HwBbXbIakdgTQI+REWl 3wp8vZ3JGIbRcVxOJWUnB1xAGx7DdgTWu4DdfM//HXkcDMMwPF5AJZU9ZgHvbvXDWhVYk9F2 0NOu1gJXtDqJhEmrNHMUJKXKG0aUfB95JEEy4+20qGW1KrBeBSwuPx4CrkFegSywimwKrSFq vT2GkQVWIo+kZ8taCPxVKx/UisDKAR+gol0NEszSdp3nqBTPzxI7UbqTYWSRb1PJfPFkSNPy pxWBdRJwlO/5T4GnW/ictNgAPExF2meFTSimxjCyyErgf33PX0YLjYGbDRwtAO/zva8PSc4s UQJuJ74I37i4D0UOR40Xm5NHd74S0po7Ke+vhDRUV22AeRQsm+WOTmH4d5QIPR4d6/moUmlo E02zC7QI2a887gDuafIzXOBP6AQem/ZEQlJCRRCjSibvRvFzp6DW4/sjI2gOhacsQwLyNuAR sl0tdhPwPdS8dy1uatbjUVnhdwKH0rn9G+9DqVmvLj8/HdnCH4zrCy+lErVaAl4T1xfFzGSk oqYdhRx29BGskd8q3UgNvxHFxoyU01dCwuuPwDlUekvGyT5EG+m+Aq1bVgTADNQ2q0R0a/De RI+gMacTPL7YYjcnIC+V90VPogsgq/yC9AVR2PEs7dfH3hN5avpa+P5B4CYqnuG4iFJglYA3 xzzfOJiDNNxOFVhdwKNU5rcaKRChaMbofhawR/nxEHAV2bZz/B4dRxZYQqX3WyscC/walawd 08L7C6g446+B15KNLs5PIyGbNZ6jcjPtRAaBH1A5vl1pIsQh7InXBfwtlaTJLWS/g/N9KGs9 C9xJ63l2R6I4uQNpb2uUQzes7yOh5TrLicdJkQSP0LkCC7Tt3VR+nAf+jpD29LACa2/glb7n fyD7Sc6Pko168wPIudEKewH/DcyNbjpMR1Ujjo7wM+MgqgqaabCDzhZYy4Df+p6fhIJJGxJW YL2VYPGtq8j+gvYiLct1VtFanFsX6rYddTHFHCoR8g2UAG9ET9avrTBc6Xs8FsmYhoQRWOPQ dtBjGXBz+Hk5Sz+KHHf95FgKrG/hfa8G3kA8HrIc2mq2nMRqjHr+gGrpebwVOfZGJIzAOgZ5 LjyuIdtxOX5uxe28wiFkv2p2juNR6kOchdpyqGLHjBi/w+hc+lGHHY/dgeMbvSmMwDqbSvjC duC6pqfmLk8Da9KexAgMIIHVrBZ4GNKA4mZvgoHEhtEMNwAvlR93A29q9IZGAmsScKbv+RPI WN0pbEEtjlxlK2qP1Swnkox9qQs4jeRK7hqdxWPA477np1JpxFyXRgLraORp8vgp2Y69qqaE 0k9c5S9IaDXLK0kuuvtIWovtMoxBggnR84ATRnpDI4HlV9GKSIXrNO7GzYavQ7QWzlAg2MUo bqaiKpKG0Qo/I6gEvXGkF48ksCYT3A7+hezHXtVjGW7Wx+qjNYE1gWSTusfRQI03jBFYQbDO 2+ko1q8uIwms46jUbB9CCbMuaiLtsoFKbpNLbCDo9g3LGJK1KRWwPoJG6wwg2eJdf7NRb8q6 jCSwzqQSLr8DlefoRIZQeINrPIgSgQ2j0/kVlTS5AtKy6jKcwBqDwuU9nqWzvIPV3INb2uMQ 0da/MgyXWQo843t+EsOYNYYTWHsSLCXyOzrLO1jNg1R6p7lACUUCG8ZooAjc4nu+kGEcR8MJ rNMIZk9nsUxHM+zArQYPa4Cn0p6EYSTITVTsWAUkg2oYTmD595AbcetijovbcKdV+lKyUUnC MKLiAYI5s2fWe1E9gTWdYFece4AXo5uXs/wJd+pj/QH3vJaGESebgbt8zw+jTnxfPYF1EHIt etyCu91GouQJ3NBqdiLhaRijiRKSNd6NeiZqBRagnsA6nmA4g8upK1HyIm7Ux1qDtoSGMdq4 DRVYANmxauKxqgVWnmAlyU2MnotnAIUSpM0TWPyVMTp5EgVMexxNlYyqFlhjCJYluY/OqX0V ht+SruHdC2Lt5BASwxgOr6imx+FUtZerFlh7E7Rf3cXoYiUqSZwWJUbfmhuGH39j5unAfv4/ VgusE6iUJWm1WkCWeZHW6k9FxUuYwd0Y3dxB0EMeaCBcLbCO9T3eSOcHL+aqBqTrZPBShKrn 1cxIi3bm7ML8DTdYBqz1PffLpEA0+xjgCN/zR6n0DuskelCPviOQ23RPgh2s06zttBD4ZZuf 0QNMiWAuYRmL2o33RvBZ44CJEXyOkV02o8bBu5afH4bOix0QFFi7E7Rf3Y/bDRqaZQLqIvOP wCHownDtjj6vPLJEgRDNAwwjJEVUe+/U8vOZSKl4CoICaz6VO/MQbtc6b4Y8yku6BElrqz9u GG7zEJJBOVQccgFlgeW3YR3oe95Pa8XjXGM88HFUN/oITFgZRhZ4kkrn7hzKvgGCGtYhvsd9 ZN/gvgtwOXAuweM0DMNtnkI2K68m1v8JrLzv3wN9b1hFthOepwI/AP4OE1aGkTW2olrvHosp yypPYHUBB/he8Egi04qHMcC/AX9NuEaxhmG4h18GLaTcN8C7oOcR7HySVYFVAP4ZbQNNWBlG dnnY93gCsA9ULupFVS/OqsA6A7gIM64bRtZZUvV8EVQE1gLfH0oo2jRr7IqM7NYjzzCyzzME 40DnQ3BL6LGZ7Bnc88DFlNVGwzAyTy/BTJv5UF/DWo87pYLD8nLg79OehGEYkbGNYAXg+SCB lQPm+P6QNYHVhbQry0EzjM5hO8GmFHsAhTyy+Uzz/WEF2arhflp5uJYXaBhG65QIxmJNBabm yw8m+/6wMsFJtcs44ANYCINRS5YDhsekPQFHeNb3eDIwxRNYnmdtiGx5CF+Oig4aRjVzya6Z YCF2EwZ5Cr1ifpOB6XlUhtS7Gw0RLJ7lOv+AgsoMo5qFwDFpT6IFpgGvxkwcIFnk9VjIAzPy wAzfC4pkp2jfvgzTztowUPDw16kNinaZ8cCXCKbJjWY2EbSnz+wiKLBKZCcG63VoO2sYw3Eg cCMSArejGMM0uyINxzhgf+AC1KLdtoOi+veanlWBNR5VD7Uf1hiJHAom/h46rzcTbHDgCmNR td8sOwriYCNBgTWjWmAV0Y/qOvsDh6Y9CSMz5JBtaFqjFxpOsYVgek6NDWsrlUp/LnMm5vo1 jE6nesc3w/MSemShRXo3KlBvXhTD6Hz8retneJHuHlmwX+2KWlgbhtH5+KMWpuUJxjHtSHgy rXAy2Q0INAyjOfp9j7vyBIvdDSQ8mWbJY91vDGM04ZdJPXkUIuDhuoY1jqrW1YZhdDR9vsc9 eYKxTK53et6NYCkcwzA6G3+ke1eeoD1oe8KTaZYDUetqwzBGB36ZNM4r4Ofheh2s/TH7lWGM JvyZCblqDeulhCfTLEekPQHDMBLFX/14QpZy8QrA3mlPwjCM9MgT1Kpcjm/aHZiV9iQMw0gU f5zotjzBPaLL9qFZWPKqYYw2/Db2oWoNazzuMgPoSXsShmEkyjjf4x15gvVmXNaw5mEJz4Yx 2vDXCBvME4xzcFnDmo8JLMMYbYz1Pe7voiqSNOHJNMOemMAyjLjpQU1LZ6DSLqtIN8e42/e4 PysaVh6Yggksw4iTxcA1wF3A74C7y88PSXFOfoE12IXKkHpMSXgyYeki2OzVMIxoWQz8nKCt eBLwehSwfSawNIV5+QuMbspTVdEv4cmEpRsTWIYRFz3AZ6hvJ86hprRfJB2TkV8mbagWWJNw M3Sgi2BlVMMwomNX4KQGrzme5CuleJ3pPTZWC6wCbvb668I6PBtGXMymcVOXqSS/y9mFoFa3 vlpgVUs0V8gRNL4ZhhEdXTR2aBVIvg/otKrv3JAn2CnHVYGVx+2QC8PIMi42lwU5Af0Ca2Me WO/7D1e3hKZhGcboYxrB7JsNXaiNTrH8hxwywLlGHhNYhtEKBRpfO67uXmZT0bBKwHpPYG1B 0iwH7JXO3BqSpdpdhuEKHwTOYWQb1USCKTCusIDKvHuBjV3A5vITr3TLvBQmFoYSJrQMo1n2 JruFL+f7HvcCm/NIu/J3V52He1UbhnC/3rxhGNGRJyiwXgRe9MrLPOf7w0zci3kq4X6TV8Mw omMcwQrDq4Git8Va4fuDiwKriPtNXg3DiI6JBAXWCqjYhJ71/WEq7iVBlwh2gDUMo7OZTLAk +gqoCKxnfH/I456RbhD3W5AZhhEd8wmGW6yAisB6vOrFi+OfT1MMIi+BYRijg4Oqnj8OFYG1 nGBdrIOTmFETmMAyjNGFXwZtB56Ciso1iIpzHVN+Xi3d0mYAhV4MYVVHjeYpopO+F3nEX0Dx h33onBqDbCazUAmVaaj6rmVXpIdfBj0O9ENFYJWAR6kIrDnI8L45qdmFYF3aEzAyxQCwErgd uBO4D9Un3wHspDZMpoAE1zjkKT8cVdo8DWV/jMNIiokoyt1jCeXuXn6j1kO+x2OBfYF7Y59a eFZhGpYxMkNIE/8t8D/AbUirChN07Glh21EFk8fLnzEBOAx4C/Bq1KDBMi7iZR+CN4hHvAd+ geVJsTyqOroQtwTWciw9xxieXuBK4Pv4TvA2KQFbgVvLYw7wNuC9SHAZ8bA/lYKCQ/h+T//F /yyVLWCOdDtl1GM1lp5j1NIHXIfMGRcSnbCqx3PA54GjgX/HLZNJJ3EwwaTn5d4f/AJrNUE7 0WG4VXZiHUFPpmGsBP4RaT1LSa4Q3WrgAuBs4OEEv3c0UACO9D1fj8xBQFBg7QT+4nu+GLeK +T1PsNigMXopob55pwH/RTppW4O+Ofw3lusaFVMIxoHej693arU96G7f4xnI8O4K25A72hjd lIAfA28Enkx5LiDN/zzgc5jQioIFBIuI3uP/Y7XAut33OAecENOkWsUlJ4CRLENoF3AZ2ga6 ZB7YiQTWBchIb7TOywlGAtzm/2O1jWoZsBaVJoVKXJYrPMToDW0Y8v3bj9TkAaRxdJfHBCq1 zDptjYaQB/DTuJkIXwKuQB72L+Nmf88s4Jc5m6hKG6wWWH3IjnVW+fkRyL24M67ZNcmTyDPj km0tTobQhfA8Cju5C3nBVqOCZtuRLWVcecxGXXqPRU6TA1AQXtaF1xBwDfBR3BRWHkXgcnR+ XoxFyjdLN0GB9RdC2Cc/gU6QIWQ3cim8YQrwGJX5deooobX/OfJE7UHzVWDHo/SGTyJhN+jA cbW6Fg8C05s8/jQZjwRsifTXL8pxaJSLVIcDUVUW7/suCfOmV6CthvemD8Q1uxboRl6htH+4 OMdmFAB5CNGVqp4I/C3S0LImuNbinmkiDLuidLe01y/KEbfAeg8VIT8InBnmTTPQlsOb5I24 FV3+PqR6p/3jRT0GgDuQ0TGurcQ04CJgDdm4+xeBD5PdLe1r0bY97XWMasQpsPLA9b7vep6K Lb0hN/jeuB631PED6KyTYKh8PJ8BJkW4TiNxIPB73Bdad+Feue5m6AZ+SPrrGNWIU2BNRWFL 3nfd1Myb30twoqFUs4QYh2waaf94UY01wF+TvBY7BfgWwe2/S2M7FedPlpmPtvlpr2cUI06B dQrBG+gFzbx5H4In8uVRz65NLsN97SDMeBY4LuK1aYZuFD+0k/TXonr8Cjebe7bC1+gMM0ac AuvLvu8pAouaefMYglrMo7jloj0RxSKl/QO2M1aVjyNtxqCEXpc0rSKdoV15HIRMK2mva7sj LoFVIChvHqOF+mOX+z7gJdwKb5hMJYg0i6MXeE3kq9I6PcAPSH9dvPEkbt0g26UL+F+SX8dS kyMtgbUIXRPe93xnuBeOVI3hN8D55deMR3e8h0Z4fZL0Ar9Ad66seZAGgS+gLY8r9KOgzEWo dEqaa1pChfPiysubhqoBHAHsiWyH69Ad/m7knRqK+DsHUYL02SRrq1yNMgMGG7xub+AjVGpQ Jc2rUOgNSLv+dSsfMoVKlc8h9GO6lG7wMpRPlrY20Oz4DboBuMgRBO90aYyXiCfuagLwTyiI to9ajaIflau5hGADz6iYjWyWSa7lNYS7+RxLMGAzSQ2rGxVH9L5jDW1EJVzh+6BBVIXUFXLo 4k9bADUzNqOUGZf5EukaiB8k2EAzCuYDvyRc0GwR1biK+nfKA/8vxPdHNYrAO0LOLU2BtS9B e/SPRnpxI/X0et/jAnK/u8IQ8J+4k+fYiBL6MR5MeyIN+DZKgk+LJShPMiqmI/vRqwiXOZBH poZrkRYfFSXgjxF+XiO2Arck+H2t8jqC9sqftPNhk1FXaE/63YdbxtDJqCNK2ppTmPECbmmo I3ER6a3TP0V4HGOR7aiVeZSAB4BdIpzPqSQTQuLVDAtrLwujYZWIXsMqoHpX3nQxcrwAABXv SURBVHc8h0xRw9LogHqBm33PF6IoaVfoRbW1h9KeSAh+AzyR9iRCcjXpVXddEuFnnQy8vsX3 en0N3hnZbGTDSqKO1w4UYV8K+fptIV7bT/SOkIUoc8XjZiJYn1dS2WOWgM+2+4ERMxaVoXA5 kLQPldLNCjnSSSnZQbA8brv8PII5PUKDu34TTEINFeJex5/SnMdvOuqsPNJnPoHyjKPk41Su 2wEiyqgZR3CRnyQ99+dwvB43o7W98SjZq+H1WpKv7LAWmBfR/GcSzE1rdexEoR5R0EOlaUVc o5fmvaw54F8Y/qZfQsIlSnoIlopaSYS5tJcQPADXopB7kAs3bcE03PgebnUgCsNcglU7khjL iS6k4DiiyYYoAe+KaE7dqORvXOtXRFkLrcTRjUfmlR1Vn7kd+A+iD2k6tep7vhzlhy8iWCHh uig/PCIOxM0k0yLR2kE8JiIv1nEo8C9qgVggGB+TxHiK6EIaXkU0ZoISCqqNgi7UlTqOtSuh 8kTtbF/HoAyMK8vzvAp1u44jp/NqKnPvQ70II6MLxbF4X7AJtzrqgIx3LgaS7iDaQMgc8Abg z+XPLiED+f8Q3XbK45sku1bPEuyY0g6nEk08WQk1aI2CbhSAHcfaPU12vNALCOZW3kwM0Qdv pmLTiPKuExXvwk3D+xaijZx+M8NHo99LtC3U/2mY74lrbETaYhQcQDRR+0UUKxQFY5HxOup1 W40qBWeFC6lcq0XUCDdyJqI4CW+RHscdu0wOeUbSFk71xvNEp1JPQ3fSkb7vsoi+C+BvSPYm MIjSg6Kgm2jq/68H9opoTnui1JMo12w5qiWVFQrI8+q/PiaHfXMziZgvIcO2x36446qfTbRR yVHiBeRFwWFInR6J04kuV3E74WN5oqBAdFvCARTh3u78b0Vb1Sg4gOiq95aQx/Fs4A8RfWYS nEIwlvNapAmHotnM8f+i0jY6h6oCuqBlLQbmpD2JYegjOoG1G409QNNpoZbQMHhJwkkSZWDy D2kvzWgb8BW0bYmC6UTjbRtAysNZKPskKxSQzPDO4R3IwB+aZgXWowRLP5wIHNXkZ8TBGUTX YSZqxhFduZaVNBZ+a6ncVNplHMmXbo4y/WMF8DFayzcdQJVC/xThfNqtT19Cppi3o8TmVW3P KFkOJ2hr+x3aHsZKdRuwH8f9hQ3oQZHuaduqhhtric6GNZng/r96lIBPRfRdAOeQvCPjfqIN ss0j50GYagR+W9rXiU5TBd20rmpiDtW/61IkfKOuZJEkV1I5psgi2xuRI5iw2Edju0qcLMDt csm9wO4RHu8ZSAhWf08RuYejPKEvrPM9cY+tRGd49ygAf4WE/UiloItIK3s/0QdKTiR8lHsJ aYVrgZ+hnpIzyV6xSj9zCAal3keCu6K3ULnzloCvJvXFdfhH3Axn8Av0l0d4vDngJCScXkIn wfPAN9BJHSXfpfHxDaJjDDN20vi3GgT+OeLj8JiNhNHvUAmbHeWxFW39PkV0YRXVHE3jG2sJ 7RYuQx7afXCrOko7fJGgzHh7kl++C8qq9xZ6DUrlSBrXU3K8u/a7Yzj2LpSMuheyjUR99+1C fQEbHd/VyPu1KMQ4iXDpPn8hXttZF8pbW4CEwhTiFwyX0fi4+8lml+tG7EGwevHjpJBb+2GC d8vPJT0BdMdcRuMTIe3xI9zwpjbDXjROHm42CjyPtjiN1msA1V3vFGYjG1Sj436GbDeOHY5P EDxn/iWNSUwmGAS3hWhtNWE4i9pkTRfHk0S/XYubv6Fxast2FPfVDO9s8JneSX0V2RPyw3Ee 4baDV5BtO1U9ZqFUPu841xJduZ6m+RjBfemlCX//l0hfGIUZ/bjV1qsROcK1pVpD84Ge+1Lf aVA9NuJuMHAzdBPO2N6He1VQouASgjLik2lOZjrSHrxF34BsAknQRbZa1l+Hu7Fi1cwnXCL5 9TRv+ymgAOQwa/bfZGfNhuM9hEvCvo8UNY+YWIBaqHnH+AzxdCRqimrX99cT+t7FuFmdYbix Cfc75oC0q88S7pharb/+aioZACONHTS/5XSJuQRv6MONEvCvKc0xTi4leJxOFEyorki6lWS0 rHeTbjuqZkcJBc65rjHsQ7j+eVuQJtYKYwlfZuVeZLTOGgXCd9NeSetr6SrzCSoUz1Fplpo6 7yO4T/0B8V6YebTFciX+agnBAofDjZeAE2JYjyj5Do1vBCVUHaMdo/g5jBzE6Y0iqoSZdIpQ u5xLOC2yhGyxWTu+kcijKqV+mRBVTbFImELQsNiHYm7iIo0uusON9Wh7+gvCCdC7cNdW8QrC Cd4+2u9ROR6tRZg16wf+nux40I4mfBmZNaSbKRIHxxM8j5biYErR2QTvzHcQXzDeqSTfIGG4 C+n95Tm9LuScBlH9atdc9nNQ6koYAXIP0cQLnUX4HL+NyPblOgtQkYAw61gEPpLONGOjC5W7 8Y6xBLw11RkNQwGli/gvzLCtspvlMtzYDv6MSoLsWMI3GNiBWxrDRMK3Ue8nuhOwCwXVhl3v VajXoKvMQ7a5sOdmJ3oGzyW41f8DDtttjyZYlvYpog+Y9PoQpi2sngX2r5rbWYTbUg2hEJC/ imZJ2mI8ak8fRjv02q2HrhAZgv1RwnGYNSuh1B4XPYf7ojr7YYVVL9nQGJthOkq78Y5xK9oe Os23Cf4wn4/48/dDhdXSFFbbkdG4mm6aa42+HvX/S4sJyDgaxvjtnYAnRzyHHPAmmqu4sRFp 767cuU9GdpqwwqoIfAF3NOyo+BTB48xE5P5uqHqAN+nNRFuU7b2kG84wCHya4W1Q82iugecm 4HySz8rfA/gJ4W2BJdRFJw4hUUCewLC/awltq/+NdAMRxyMb5gbCC6sSMp1krbFuIw4imIKz DtWwzwQXEDz5fkc03aLTrs5QRBd5o5rp/0BzOY59SBgkEW+UR2r6fTR3kT0Q8/xmoPOkGdtk EZWFOYXkta0DUWhHsx3Hl5FcNkhS9AA3EfxdLkp1Rk0ynqABuohitdplVxTen4awKqHy0GGa CPQgjaHZi28pCheIo3ElaP2+jLTeZua2kWRsEXORh63Z3+YllCy9iPjjmfZElUnW0bzjZx0q K95pnEdQQbmbDFadOJKgrel52i+OdibN39GiElZ/pLlqFFNprcvvTiQYzyC6beIs4EMoTaTZ i2w78dTzGo7Dab133waUTXAs0WtcByJB9Syteai30H7smovMI1jragda/8yRQ5nanuQt0Vqy rJ+vkLywKiJ1txVbyVzkOWpFQPYhb+iFyD4wmfDaQw/aYp2ODJ+raM3u14/yv5KOGTuY1uuc lZDG9We0LTmS5gv0FdB6749spr9FFUpbDaXZgOIUO40C6jjub4r6JWI0tMdtwd8FuB1dcKAD OgcJrmbpAe4k+nrfI1FCKUDvRx69VjgAHW+rbcRL6GJ5BtlrnkYNQtcgr90A2oJPRraR/VDk /RFII2y1R+Egsqt9DAmupDmKyjavVTzNZjVqbvEkEoTL0LZ4G1rf8ehcnYvWby+0fnOQ4G9n m7kZxdz9nORbpsXNa9G57d3QlqJy4JtSm1EEnEzQAL2S1jrpHoJ+/KQ0q20oJCMKZ8EiWtO0 6mkPJST4B+uMItEE1PYjT2ja9cT3RI1Mo/IKj7R2Ua6fN5aS0e1RCOYRjJ/rw53Gym1RQAm1 /hPhRpq3MbybZNJxvODEN7Ywx5GYi9zZLkTojzS2ovLXrqQOzUDNMLJUmaMI3ELneQM9Cqhj s/+a+U/ciYtrm6nU9tP7UBPvLyAXctwX+04UNhFXMupE1JwzbDR8kqOEtpuvwL1gvwLqsuJK wvtIYwuy+7W6Fc8C7yd4zEsJ5z3PFCcT9BpuJHyjgSkEa27FcbE+BbyLaJtn1qMH5VutxA1t q4TsYNfRup0tCXLIU3cD2n64sHb+NRxE9to0YsKS5GXInusd+3Y6ZCtYTQ51z/Cr9g8SrqjX roSrLdTKWIVsVUlHHs8Bvkf62tYTqDFEVi6yAvB6FPjqyjbxCRRnGFf8nCuMJ5jHW0TVaV3T yCNjHLUVDb5GYy/MNILpPu2OQbS9+AIyHqa14F2obtgvSFZrKKL0oc/QfBMJV5gCvA15/9Lo /D2IPLcfIZsVUZslT23J47vo7K0vII+ZP9euj8ZdYAsoqbidC9oLD/g9MuCnXgzfRw8SXD9C 6nZcmkM/qo56MekK6iiZhAIyr6W5nL5Wz6EtKIXoHWSvdVs7vJXgLmc9lXCljuedBCsEbEZh CyNxEHKjhjkhPff/AGopdRuKJzoMt+8I3UigfxDFXG2gdVe7twY7kb3sWlQVYQadIaiq6UHx Zx9EtqS1SAvy1qHV9RtEcUX3oEYRx5DBtJM2WYxszn7t8j1pTCStEzeHypqc5/u/h1E6ygsj vO9w4IsoH8sfH+VpapvK718JPIQaGDyGBF3WyKN4taPK42Bk95qJgkTr/XZFpEWuQVvee9GF 9gASfqOFHFqrl6EA0EPLz3dF5oXh4suK6Oa5DjVNeAyt38PITtVpgZ9hmIVSxfwVV65CCf5D SU8mzTvtFFSx84TyPIaQB8hrTjAc41BHjj2pCKotyAO5HcUReYbsTqIbRWNPQNugSUhbHIu0 qF4q69CL0lNG4wVWjzxy7nhrNgmt5Vh07nnr14vWbxs6jwbTmKxDdAE/Rl3AvWv0HtQUONPR 7K2yF0FjehH4OJ25ZTGMLJFDDgW/PXUdSl0a1ZyF7mbeogxXzdMwjOR4A8EGIdvozGoTTZND kcF+g+cmOjcHyzBc50hk8/Rfk5/Adj7/RwHtlf3enBW0l6lvGEbz7IuqWfiboF6LO7mlzjCV YD+zIRTNPCPNSRnGKGIaCqfxX4O304F5glExm2CJ3BIqnhdlWynDMGqZiKqo+Hc5j9Ncld1R ycGovItfaF2BqaSGERdd1PYgeB7FPRohOJFgsb4i6nfYk+akDKMD6Ub5vP5ac72ozJDRBG8j WKl0EEW5m6fCMKIhh5qf+oVVHyqzZLTA+QS75AyixhZxt3IyjE4nj0IV/MKqH/UUNVokjyoL +MuH9KNuKKZpGUZr5IAPELyuBoBPkp26aM6SQw0R/HeCnSgr34SWYTRHDl07/lIxg6jnou1c IqIb9SSs3mtfhC2yYYQljzSramF1OebQipwu4FsEXa/9yKZlmpZhjIxXoty/DSyhMk9pt3Pr WMYhoeXXtAZRqWO7QxhGfbqp9QYOImEVd9OVUU8XtdvDQSTILLjUMIJ0URtn5W0DTbNKiG5k iPert0V0x5iU3rQMwykmogh2v7AaQAZ225EkTA6FPPjjtErAr7CEacOYRm1uYD8KXTBHVUrk UXCp3+tRQr3TXG4Kahhxsi+quuAXVn0oKNTirBzg7aieub8sxnKsCKAx+jgS1bPyXwu9WLqN c5yIusVUVy59Exb2YHQ+OVTWuLo34/NYIrOzHEKwnpZXI/5izINodC5dqGGEvwa7V8/KSsQ4 zmxUudR/lykC15PdtuyGMRyzgP8l2N2mhCqFWvG9jDAVuJraTr4PoQKBhtEJLAbup7az9bVY WePMUUDt6f0txIZQZ+S3Ya5dI7vkgbcSbB/vteL6BGb+yCw51KX2eWpdvF9BgXWGkSXGA5dS G8qzDvUNNAdTB7AXcBvBu9EQ8ABmlDSyw8tQjGH1eXwX1pG545gKfA+lJvh/7A2oPpAF1Bmu UgDeD6wneO4OAleiqHajA8mhALq11N6lbgAWpDc1w6jLPGRErz5f1wPvwbaAo4IDkdvX7woe Ap5FwXdmtDTSpgC8FnVA95+jRbQFPCi1mRmpMA4lgm6jVs2+DtO2jPSYB/wPteaL7cBnkeHd GIXkgFOAJQS9iCWU5nM+MCa12RmjjR7gPGAVtefjUuA0bAtoIKPlfxDsg+ip37cg74xhxMlB wE3Umin6gP/EAkGNKgooSXQJtSfNi6h2vNXZMqJmOipfvInam+VjSKsyD7YxLFOBz1Nr2xoC nkSlbKy0rNEuXcC5KEG5+jzbAXwJC1cwQpIDjqK+J3EQuBU4AUvvMZonDxyPEvSrjepF4G5U x81sVUbTjAc+RP24rR3ItmDeRCMs85GtdDu159M61GdzQlqTMzqH3YHvoMqN1RUgtqCuJHun NjvDdRag/L8t1FZW2ApcAeyZ2uyMjiSHVPXfUrtN9O6QX8RqbhkVZiFnzTpqz5cS2hYej23/ jBgpAOdQG7vlnYSbgM8Ac9OaoJE6e6AyL5uof44sReVhzPtnJMYU4APAc9TePYdQ4OmlmOAa TcxBWvYq6p8TzwEXYt4/I0XGAx9GnUrq3U37gB8CR2M5ip1IAXmUr0SOmHrnwDPAR7H6a4ZD zAT+BXiB2pPWqwb5S+B0bCvQCRSAU4GfUz9mr4S8y59EtizDcJIp6G76GPUFVwl19vkw5lnM IgvQtu4Rhv99H0c3rykpzdEwmmYK8HfAvdQGCHon9gbgGuAMlPhquEkP0qauRnWo6gmqAeA+ lAkxNZ1pGkb75NE28AbqBwx643G0fTgYs3W5QAHVTfs40paH+922o23hmdhW3+ggulDVh68D q6kfy+UFEt6Lop73xfIWk6QbrflFwD0oULieNlVEjU2+ARyK3WCMDmcySnz9NbUlbfyjH7gD dfVdjN3B46AALEIpWLeiNR/u9+gDbkZt4ianMVnDSJMuJIi+gErhDnexlJDm9RBqT/ZKFMtj ydfNk0c2plOALwMPMrwm5dmmVpZfezCm8RoGoKTX01FC9QqGv8v7Xeb/D1VFXYwZ7UeiG9mj 3gNcz/ChJ9VBnt9HtqlJyU/ZqIflMLnJLqh8zRuREJvN8NtBz/C7Afgzsr3cgQJZNyN7y2ii gDy0C4CXA8eUxwwU5DvcOV9EOX+/BX6C1nALWl/DEUxguc90dOGdDpwELKSxLWsIaWBLUOPN h4AngKfR1rKTmAjsA+yPtmxHIo1zVxqf3yW0Lrcie+IdqP274SgmsLLFWFRT6XQUu3UYirAP I8B2IgP/ChT0+DASaM8gG842pKmVop92W+RRh6OJyNA9H9U/P7j874Ly38fQ+HwuojiqB5GA uhmtx47op23EgQmsbDMLudWPR7mKh9N8s4JBVFVgHbqYV6D+jM8gLW0T2lpupFLPKUryaAs8 DW3lpqEt8AIknOaj45xV/luzIQSbkJb5Z+BO4AF0XEYGMYHVOXiayH7Aiah2l6eB7ULzv7Vn 3C+W/y0h4fYispdtRB60AeTuL1IJjN1W/owJ5e8dhwTNWGQA70aCdQby2HWV559H2mK+xfn2 IqF7P7Ll3YYCcr2kZCPjmMDqbMaj2kwL0PbpIGTfWUj2S/FuR8JoCdriPgIsR6Vdtqc4LyNG TGCNPvIoBGIfFDA53zf2QBrP5PJIK86rhLSlXqTRrUZbVW88DjyF4tZMcxpFmMAy/BSQwJpC Zcs20/fYPzx7Uk95dKGtX46K9uaVXdmBtpP95eHZzbyt5Xrf4w3l5xuR7exFRl9ohjEM/x+V F2Vv38ND/QAAAABJRU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAYAAAB5fY51AAAACXBIWXMAABcRAAAXEQHKJvM/ AAAgAElEQVR4nO2dd7xcZZnHvzO3pPdCCMQkdKRHQxGp0lQsq64FVlwL6sKuilhYFHTtsJbF LmtBXVkVUcS1gQiEKkgPJJRACIQkpNd7c++dmf3jN4c5Z2bunTMzp8/z/XzeT2Zy7515551z nvd5n5rDMCrkgEnAlPKYBkyvM6aVf28c0AWMBfLA+PJrjC+/3jagVP63COwACuV/NwPrqsZ6 YG35343lsbn8GoZBLu4JGJGTB7qBucD+wPzy4/nAHGAqMBEJpO6Y5jiEBNUWYAPwDPAU8HT5 30fL/w4hQWh0CCawss0oYDYwDzgAOKT874uRQEozm4ElwMPAA8BiJNBWAjtjnJcRIiawskMe Cag9gWOAo4CXArsAk8s/b4ZSeRSQFlMsP95K5cjWBwyW/x2icuTbVn6N8VSOjM6/3eV/J6Pj 5YTyz/Ll0YWuy2avzSKwCXge+DtwB3ALsAzoxzSxTGACK91MAw4CjgaOABYiAdXM9+rc6GvL YzmwAt3oa9CRzLEnbSJ47aWXis1sCjqS7gLsgY6qc4EZ5TGF5gXvGiTA/gbcBjyI7GVGCjGB lS5GAbsDJwOnAIejm7uRrakEDCBN41ngIddYhoTR9vIohDHxNuhCxv1xSCvbEzgQOBgJ6znA aCT4Gl3PQ0gDuxv4M3A9so/ZETIlmMBKPhOBlwGnAcehm9WPgFqP7Dv3AvchQ/XjSDhlicnA 3sB+yEa3AK3RdPwJsIeBm5EAux1pkUZCMYGVTCagI96bkaDalZGFVB86ut2DbrpbkXDagG7K TqIbHR33Rra8I5EtbyqynQ3HELAa+CNwNbKBbQl1poaRYsYAJwDfQse0UoOxDvg/4IPAYehY ZNRnFNK+PgBci2x1jdZ3GfBd4ET03RhGx9MN7Av8B7pBBqh/8xSRfekR4BvAq9CRpyv6Kaee PHJWnAZcho6ETmBrvbUfQDFfn0Vxa3HFphlGbIxDx71rkSAabpcfAu4ELgQOBXrimGzG6UHa 14XoGDjE8N/HDuD3wFupRPMbRibpQsbgS1CA43A3xnZkKP9k+fd745hsh9KLjPcXoO9gO/U1 ryHkXfxP5K00TdfIDDngeOAqKrl19cYTwOcwTSop9KDv4jPAYwz/vW1HRvoTMSeWkWImAm9B wYqD1LdLbQR+DbwWM5onmVHAq4FfIc9rPa1rEB3f30b6056MDmICcB6KqK53YRfRjn0hMrjb rpwu9gY+Dixl+O93MXA+uhYMI5FMRRfpSupfyH0osvp07MiXBbqBVwJ/Qsb4eoLrOWQPmxbT HA2jhlHAv6JI8mpBVURu8Z+jIEYTVNmjG2Ui/IxKknU9jfo8LJ7LiJGJwPtQjE49Y+xq4L+A veKaoBE584GvIM2q3jXxFHAuSicyjEjIA/+A8vMK1O6mm4EvoovX6ExehDy+m6mvcT0IvAkL hzBC5qXAH6gVVE6qzFdQNQXDABVPvARdG9XXSwG4DuWMGkagzERpHJuo3S23At8E9oltdkbS 2Qv4GrpWqjWuLSh/dNfYZmdkhjHI5rCS2h2yH/gJcnMbhh/2An6Irp3q62kVSmQfqaKEYQzL AuCv1KbQDKESLidiNgijebpQXbNbqb22CsAiVDnW4vMMX0wEPkX9NJongbOx/D6jfXqAd6K6 ZfXSfT6LRcwbI5AHjgXup9aovhkZT2fGNjsjq8wAPk+tfbSAvInHY5q8UcVkVGeqOmK5CNyE VHTDCJPDgBuo3Sz7gO+gKqqGwTFIq3J7b4oo8PNDWFKyER2jkJNnFbXX40NI2zLbVocyGuV5 baXWqH4NFqZgxMeeqGRNtVF+O3ARluLTceyLPIDV6vdKVE3Scv6MuOlB0fArqO9J3D++qRlR 8g7q53r9HoupMpLHHqiUdr1c1XdjR8TMMglFFFcX09sAfAxrLmAkly7gw6jXZHXRwMuxZOrM MRd5YKrTIh7CcrmM9LAQOYiqta2bkSZmpJwccCq1RfV2ojCGifFNzTBaYjzwVXQNu72Iq1AZ ZzsippQ8UqO3UBsE+h4sGM9IL3ngn6kNNt2KyjfbtZ0yJgFXUL/W9kvim5ZhBMoh1O8d8DMs 0DQ1zEB1htwhCwXkaZkd47wMIwxmoc5L7uu9CNwI7BLjvAwfHAg8gHe32QF8GoutMrJLD2q8 W51a9jBq9GokkKNQN173F7YROBOd+Q0jy+RQH8wN1AZDHxvjvIw6nImEk/uLWoHyBA2jkzgK WI73XtgEnBXjnIwyeVSfqg/v+f1+4IAY52UYcbI/cA9eY3wfcA522oiNHPARasvNXo/VrTKM 6cAfqY0/vBCL1YqcbuATeIPnCiiUwao0GoaYiFJ33B7EAcwJFSldqO+fOyewAHwXK11sGNV0 oxxad6maIeDLWP5s6IxC7ZLci18ALi3/zDCMWnrRJl8ttL6J1dYKjS4krNzq7SD6IiwVwTBG JocaWwzgdVB9E9O0Aqeb2h1iAFUMNWFlGP7II0eV2/brHA/NphUQOWRgd9usBjBvh2G0Qg71 KnB714eQId7upzaptyMMIs3KFtcwWsMJCXIfDx0lwOK02uBsvDtBAbNZGUYQ5JFNy21m2YmC S40WOBNvBLvjDTRhZRjBkAO+gFdo9aO+B0YTHIU3N9CJs7LQBcMIll7kKXR73zdjCdO+OZDa qgtXYEGhhhEW3Sgi3p3G8xwqEGiMwAy89ayKKDfQ0m0MI1wmAH/AK7QeJmFFAJPkaZsEXAWc 7Pq/B4BTgOd9/H0X6hwyD9gVfQEWEOefPmAd0m4fRyVJDBmnd0U9K2ejllpBxSw53ZyddX8M 2BbQa7fCdOBPeMuI3wS8AZlojDJ5dOxzn6NX0LhETA7tAOcBtwJrqe07aMP/KKIb5kl0RDiO zg0onIQcP39CxyN3aE0Y674FeBRlcywgPufSfsBTVXO7Msb5JI4c6m7j/gI30rj43kTUAPUZ aovw2whm9KFa+AtJljYeJqOBtwJL8HrPohpFpHX9lPhquh1FbeVSi30scyreVlw70M42Enuj Wj+mTUVzA60GziX7jo9pwA+prY0e17qvAN5IPNrNm/Guw1bg9BjmkSjmoprTzqIUUIrASNG2 hwGPEP0F1OljAAXtZtUuOBs5eJKmrW8HPkD0Eeg5FPnuNtOsooM7TE/C2z6+iI4fI9lM9kPC KmkXVaeMAZTXmTV7xiSSKayc0Q+8neiPZN3A1Xjv0UV0aM/Db+G9QBYzct/AMajfYNwXT6eP rB0NuqktW5TEsRo4MqQ1GIlZ1LbO+286zJ71Drz2p82M3JE5B/wb8RhBbdSO+8hO3fyTkBCO e00bjSIKMRgdyiqMzMF4M08GgffEMI9Y2Be5iZ0Pv5PGH34W8ATRXyQ26o9BFEqSdkYBfyb+ 9fQ7BpARPg7OwluIYA0d0JlqNPBXvF/CN2hsE3kfybUvdOp4GIWWpJnjkFE77rX0O5zMjzhy avOo0J97PreQ8RLLF+C1FTxE44u+F4UwxH2x2PCOfuCEEb63NPBV0rcRbkGnlDgYj8wBzlwK wMVk1J51DF5bwQbgCB9/9yJkcIz7QrHhHUXgUyN8b0lnDHAn8a9jK+v+rhDWwy8vQalEzny2 E+HGFVVsx2R09Bvv+r8vAX/z8bdzUF6gkSxyKJs/rbvrWGCfuCfRIgfH+N73AJ9zPR+L7u2p 8UwnePLoA7lV79/jPwDxDMLN47LR+riX9AqsfantGp6WcRXxljLuAq5xzacIfI8I4vOi+NAv B95N5cJ+DhXBH/L59+OxOtNJZRzpFVhpn3uc90QBeYlXlJ/nkBfxuLDfOOwPPRH4OhVPQgE4 H5Uv8YsJq+SS5oj3tM89bmH7FBJahfLz0eheDzUKPmxhcB5wUPlxCfg/FOpvGEb6uZbK0RBg f9SNJzRhGqbAWgB81PUez6NyMIMhvqdhGNExhO7x1eXneWTuWRjWG4YlsMagILNx5ecl5BV8 LKT3MwwjHp5CXsNi+flY4CvlfwMnLIH1LrxdNxahrjeGYWSPH6AMFoeXAe8P443CEFgzUR0d x6i5BamN/SG8l2EY8bMT3eNOH4A88HFGrr7SEmEIrE/gneh3gbtDeB/DMJLD/ai/ocNM4CIC NsAHLbBeirdr7FPoPGsYRva5DG/I0pkEXMMrSIGVBz5DpYdgAZXU9dOiyzCM9LMO+DyV2KwJ wGcJMOYtSIH1OtRQwuEu4McBvO5WKh4II1k4yeyG4XAlcJvr+QnAm4J68aAE1kRUZsJ5vZ3A J1HBsXZ5EHXvMJLHXZjAMrwMonvfcbLlkS1rchAvHpTAehuVDPIS8Evg5oBeeynwK+zGSBrr UMKrYVRzG/AzKvfsi1GuYSIYhbdT7FbUNzBIZgF/wGq6J2EUkbCKo4tLkCwkvVVA/kzyO3LP R70anDk/QwDBpEH0mDsbmOd6/mOaS272w2rg9chOdgoSYO6bZTQKVst0udYIKaGshMfxrnMf qhL7P6idvWEMx1MooNSp/b87Cib9amwzQkW7HqUiRdcRflG0PPI6dLvGHFTqIu6dLyvDqSbq Xucu0l3hoBrTsMJnTxQl4Mx7GTCjnRds14b1TirHvxLSrsLOFywit+mQa5gXMXhKeNe5QMVd bRh+WIa0rFL5+XzabA/WjsCaAHyYypFhK2pIaRiG4XAZlZSdHPBB2vAYtiOw3gPs6nr+beDZ Nl7PMIzssRqVSHeYidr2tUSrAmsiOg462tUa4PJWJ2EYMZDm463TKi8t/ABYVX6cQ+l7LWlZ rQqsVwIHlh+XgJ8jr4BhpIVVpLOCSAmdZPz2REgCK4CfUhGy+wGvaeWFWhFYOeADVLSrIbxZ 2oaRBjYBi+OeRIvc1vhXEse3qGS+ODKkafnTisA6Djjc9fzXwBMtvI5hxEkfKnuUpqMVKE3N Tz/PpLEC+IXr+aHASc2+SLOBo13Aua6/60eSM6uUUKxOUtXvHMo0SEIXlaDIoxgj5zM5YSyD BC9cFgHnkI6YJofHgZVxT6JFvo0SocciGXIOqlTq+/5qVmDtj+xXDreidt9ZZCM6d/8GeTqS GOs1BtUge2/537S2RMujoo/HI+39xSibIY82jKeBB4A7gNtRFdsgeAgdDdsKZoyQEnAfCiFK I/cANwGvKj8/BdnC7w/rDS/BGw19elhv1CS7EWyk+1pUFiMtAmAaSpdxd9duN9L94gjmnUMX 7HeQEdzRooabUx/wMGolNT2A9x+FNt24I9f9jgIJSiJukVPwXqehxW6OQzud80aPkRxVOkiB NYiOvWljGqpskRaBNQ6VIVnf4vwWI09Tu0fhy1p4/7jGFip9PtNKN9p0nM+0EoVJBc6bqVRL KKJGE0khSIH1NCEUz4+IT5EOgTUb+C3tV9/YWp7nqDbm8loqcU1JH0tIjpLQDudT0bIKqJSy L/weebqBf6KS/LqZ7HZwXo4+XxoJzRYQIDOBnyBzQrvJ1ONR05NP0nrlkaXIBJAG7iQbjYiv ATaUH+dRqSJf359fgbUn8ArX8xvJblPUnaQ3CjrpgZBjkL3qRILzavaijuLva/E1V6Ak3aRT ILiimHGzDPiL6/lxKJi0IX4F1hl4i29dgdQ5w2iG91KxOwUZhtGLmh3s38LfDiDPY9LZhDyE WeFHrsejkYxpiB+BNQYdBx2WAdf5n5dhADAX2T3DssFMQR1bmrVnFVG4RFJj7RyeQeaKrHAj qqXncAZyxIyIH4F1JCqQ5/Bzkn/0MJLHO5H9KkxOAo5o4e/uRiETSeYuYFvckwiQAdRhx2E2 cHSjP/IjsN5EZVfcgRpCGEYzzADeGsH7jEc7dbPHzVXI+J5USih/MK221eG4hooQ7kGRCCPS SGBNAE5zPX8UxVAYRjMcimp6R8EJ+DhaVDGEBEJS7bIF4Ja4JxECj+DdKE6i0oi5Lo0E1hHA Hq7nvyYbblUjWhbQvBBplTm01ldgEcnVYJZSqSeVJYbwJkTPBY4Z6Q8aCSy3ilZAKpxhNEOO 4Nu+jcQYWgv8vY9k2ohKyMaWVbvxb/EqQW8c6ZdHElgT8R4H/052Y6+M8MgTvrG9mmkt/M3z KBk6idwU9wRCZDlyKDicwgjf30gC62VUaraXgGsJpvW80XmMjvj9WmnYuQNpWUmzY21FVQ6y yiCSLc667wK8fLhfHklgnUYlXL4PdV42jFZIS62uG0meHetJlN+aZf4AbC8/7kJaVl2GE1ij ULi8w9OYd9DIPouptKRKCkm1rQXJErydxI9jGK18OIG1O5UmEwA3YN5BI/ssJ1l5hSWk9WWd AnC96/l+wLx6vzicwDoZb/b0HwOZlmEkmyGUppMUtpFt+5WbP1KxY3UhGVTDcALLfYZcj9eK bxhZJknxWM+hGu6dwH14y/ycVu+X6gmsaXi74tyJ6psbRiewGIU4JIFFdI4pZhPeqhkLqBMO U09gHYRciw7Xk5wdxzDC5lmSURWhQHYbvNSjiGSNcyycgVK6PNQTWEfjDWdYFMbsDCOh7KTS mCJONtN5pphFKB4OZMeqiceqFlh5vOU5NiCXo2F0CkXUqDRugbUCaXudxGPAOtfzI6iSUdUC axSw0PX8HrKbw2QYw3EL0rTi5G8E138xLQzg1SpfgnJDX6BaYO2J136VhtKxhhE061Hpkzi5 g2Q27w0bt91uGlWVN6oF1jFU0ihK6CxvGJ2G0/AhrmPhAJ1rO662Hx7r/mG1wDrK9Xg9nRMD YtRSotIsop2RJ54bv91530Z8dd6d1mPVc+oElgFrXM/dMskTzT4KeKnr+cNUeocZncc/UXWx tMFhAb2OH0qoc/dr2nydCfjvKhU0s4CrqAj6EroXH0W2rfvwGqezxCYUCzer/HwBsmP1gVdg zcZrv7qX5HcSMcIhh2wHrVTujJsccEB5pJWZDBPpjQJJn0W9Fb6Hkobj9mgGSQHV3jup/HwG ym1+HLw7yDxgcvlxiWz1QDOMrNADzAc+grSti1CLsyzxABUhPAl9XsArsA5wPR/A2zPMMIxk kUNetIuBq2mtiWxSeYxKWEkOZd8AXoF1iOtxP2ZwN4w00IU6BV3LCJU6U8bjePtE1gisPN4z /7NYwrNhpIm9UJPjV8Q9kQDYijef80DKssoRWN3Ai12/kNRi/IZhDM9uwBV4T0tpxS2D9gN6 oSKw5uJtYGgCyzDSye7AD4iucW1YPOh6PA5pkC8IrGqDnQksw0gvC4AvII9iWllc9Xx/qAis +a4fFElWXWvDMJojB7wNOCvuibTBk3jjQOeB90josAkzuBtG2ukGPgHsEfdEWmQL3kybeVBf w1pLpUeYYRjpZR7w78SXYtQO2/GWqp4H+iA5YI7rByawDCMb5FBO6EGNfjGB7MDblGI3oCuP vINTXT9YjtVwN4ysMBql7/TGPZEmKeKNxZoCTMmXH0x0/WBFhJNKIj2kU4WGdHuFjPA4GW8l lrTwtOvxRGCyI7CcGKwS5iGcg0qLpJEs5ZMZwTEROCfuSbSAuxLFRGBaHiVQOmVmSniLZ3Ui c4Dj455EC4wD3hT3JIzE8krKwZcpYg2VMtF5YHoemO76hQJWtK8XuBTlL6WFMShrf2GjXzQ6 linAGXFPokk24LWnz+jGK7CKWAwWSMu6FvgKcANauCQ2BBiDQlI+BLyazimjazRPDng98HUU a5kGNuG976aZwKpPDgmCb6BFq164pDAKVYk1Y7vhhwNQ2s5f456IT9bjve+mVwusAumRvlGQ o+xOjXsihhEAPcAbSI/A2ow3PafGhrWV+BtIGoYRDjlUK35U3BPxSfWJb7rjJXRYH+18DMOI mBeRrsh3d3eg6U6ku4PZrwwj23SjQNK04I5amJpH8TsOfRiGkWVyqIXW6Lgn4pMB1+PuPCpi 7zAY8WQMw4ievVC/vzTglkm9eWCs6z9MwzKM7DOL9KRx9bse9+bxJvpap2fDyD69wGFxT8In 7kj37jww3vUfOyKejGEY8XB83BPwiVsmjXEK+DlYHSzD6Azm4FVWkkrJ9ThXrWFti3gyhmHE w66oimfScVc/HpfWQnWGYbTHBGB23JNoljxerSoNKqJhGO2TBw6OexI+cMeJbs/jPSN2YRhG J5AH9ol7Ej5w29hL1RrWWAzD6ARyqDRR0s1CY1yP+/J4682YhmUYncMskp+i0+16PJTHG+dg GpZhdA67knyB5Z7fQDdVkaQRT8Yhh3ojzkXR9stRba7SCH9jGEZ7zCD5AstdTXcgCRrWBOBj wN9QJcSbgFuBf8ZK/xpGmPSS/JZ2bhkw1I3KkDpMjngyXago/tvx2s+mAN9FKuuXSGY9dcNI O04J8CTjLjC6IU9VRb+IJ/Nq4EzqG/t7gY+SruqIhpEm0iCw3DJpXbXAmoAERVS8iZHtZpNQ DWrDMIInj2zHScXpTO+wvlpgdRGtxJ3b4Oc5lO+U9FgRw0gjOdQCPqlMwqvQrK0WWNUSLWy6 adz808/vGIbRGlGeqJplKl5lZV0eb6ecqAWWYRjxkmSBNRmvwFqfB9a6/iPqI6FhGPGRI9mh Q1PxOuTWdaM2OoXyD3IoXD9J5NCxcCQ7VlwBr4aRdpKsYblzHYvAWkdgbUbSLAfsEc/chuV1 NA5t6AVmRjAXw8gaSc4fnk/Ffr0FWN8NbCo/cdybjTx3UbNreRiGETxJLos+z/V4C7Apj7Qr d3fVuSRb6hqGERxJ7ZSVxyuwNgIbnfIyz7h+MANvlT/DMLLLQONfiYUxeM08K4GCY9Ba7vqB CSzD6AxKJLe133i8Ams5VCzwT7t+MIXok6ANw4ieJAusiXjThpZDRWA96fpBHtgzmjkZhhEj JbzVWpLEPLzhSsuhIrCWVv3ygeHPxzCMmCkhY3YSqQ5lWgoVgfUUXkmbhvY/hmG0R5IFllsG 7QAeh4rKNQQsAY4sP7caVPFQBPpQt9tngVUo5KQPfUe9yBg5A9gdGSXHlv/fEsSNZhnCm0uc JNwyaCllb6YjsIrAw1QE1hxkeN8U1ew6mCKwBrgduA24C9kUtwE7gUG8te3zSECNRg6Sg4DD gROBA1BNMxNehh82o80waYxHUe4OiylXHXYbtR5wPR4N7A3cHfrUOhPHO3MX8GPgBiS0Bn38 bRHoL49N6Dj/O+BzwP7Aa4AzkOPEciyNkXgebYpJYy+8/Qgfch64E4pfkGJoB98v/Hl1JAPA r4FXAqcigfUs/oTVcJSQALsP+AxwFHA2+k6t85AxHKtIpoa1LzCq/LjEMALraSpHwBxwSCRT 6xyGgDtRHfu3ArfQnpAaiY3AFcDRwHnowjTBZbgpoesirGuwHQ7Gm/T8lPMDt8BaiVREhwXY kSIotgGfRcLqL0SXv7UFdSU6FR0bk5zoakRLCVgW9yTq0AUsdD1fi04ggFdg7QT+7np+IFbM r11KwKPAG5DA2jDyr4c2h4eQVncxEmKGUUQmg6QxGW8c6L24ovGri+Ld4Xo8HRnejdYooeaw pwPXE/+RrA/4IvAekht7Y0THALAi7knUYT7eIqJ3un9YLbBucT3OAceENKmsUwL+hDx2T8Q8 Fzcl4Crg9SjVIW4hasTHKlxHrQTxcrxhOYvcP6wWWMuQe93hSIxmKSHB/y68HYmSxCLgvWh+ WRNapfIoogDcDcBqdIOuA7YiW57ze53KSpJ5fbplzgaq0garjer9yI716vLzlyL3YhJjNZLK A8Cb8Qr+JPIXJLR+igL10kwJCaGnkF3mFmQ7fA7Z7PqQABuDSiftiuLUXgYcCuyDrvNOCri9 m+QJ7B68Auvv+Ai7uIjK7rOdcMMbbnO9VxbGc8ARga5QuOSAC5HXMu61a2UUkT3uJ2iTnUHz QmcS8kr9JwrtcWtfWR0F4I1NrlMUHIA86s48P+vnj06kkg5SAj4Q1uzIlsAaAM4KdnkiYSzw K3Tzx72GfkcRHfEuRVHRQWlGU4EPojS1NK1Hs2MN8OKA1ixI3k9l3YeA0/z80XR0vnU+3LWE 1yo+KwKrCPySZPd4G4m9kMco7nX0s879KFPgYMLpPZADZiONayPZFFx/I3lVhfPA1VTmuAq1 +fLFNa4/XAtMC2GCkB2BtQrl8aWZc/Bq1kkbRRTYfDbRbAw54HhUxSTuzx70uJTwlJBWmYKc I84c/9jMH/8L3g/oSzVrgSwIrCLwSdJvsJ2MKkbEvZ7DrfHDeCOgo+JF6JSRFU1rCOWxJo0T 8K7xB5v5473w7raXBT27MlkQWM+iY3QW+EeSaXS+m3jLdk8AriS9zgn3WF3+PEnjUipzLNDk iWUUcL/rBR4mHDU87QKrAHw+8FWJj1Hou457XZ1RBO5BYQdxMwn4BenWtIoojCVpp4EuvPLm EbzlZV5guHPsTuBm1/O5xOdVaOYLiZqNwP/G8L5hsROVuyk2+sWIWAW8HXgs7omgYnfnUBV5 nTIKVAzbSWIfYA/X85sZJv5qpGoMf0ZfUDdyfb8ab5G/qLgR7QqNFvlkVLguyt3jNsK7mcaj JNCXoQ4iY1Hk7xJ00zxNOFUffgt8jPAcLX7ZDvwb2m2TwnrgXOD3aBNPG08iO2XSeCWV4OUC SmtrmsnIPuNoL3egwn5B4udI+G38ua9PIHobw9mtf/Rh6QZeh6K1t1N7BBlCntsfEY5nspdK snac42uEE7YQBGeQPntWEfhKGIvRJj1Io3Lm+RxtbJaXu15oiOCrkAYpsMYit3dUF8A2VBkx SMYD30LlNPxcgM+isjFBu6g/7uP9wxxPoKj1pNKLNNE02bO2AYeFsRhtsjcKunbm+ZN2XuxU vB/6gnZnV0WQAgtkf4nqAriXYHPwRqMNotmbYCvBp1kcQ3waxACKeE46R6IKvXELIr/jDyRT Y/0I3nme3s6LTUTnXufF7iFYb2HQAutkdIyK4gK4kmA1mwvw7jTNjFUoiTcoZiPVPI4b6x68 LcqTSg74H+IXRH7GdsKLpWyHLlTvypnnM8gUNSyNbrgtwHWu5/uhBMWgcITLSBp65AsAABYZ SURBVGzDv9fqTqT5RIGTbxYEc4AP0fpmMAsJvKAcDmuIr/TIT4mnMmuzlIAf4KqGmWBux1vr Linshzf64Dq8DZ1r8KMhXEWlUP0YVO43KO5s8PMhVN63kVBz2Ap8mWhqpgdZD/ufUFPUdngV wW0mBZRPGjVb0PWWFu7C1dEloRSALyHlIGm8nopZZQh9937v9WEZg+oMOWrbY1Ra8LTLXsjj NZwq+yDNHw9GozykMA2iQ8i+FwQ9wE0BzfdfApoTSHuI8thSRI0ykmhnGY4c8AmSa3wvorSi JK5pLwpZcea6Ah8R+H40rD50VnfYGziphQnW4wngn1G5XjcltHO9g+aPB/3Av+PtABQ0A+io GgTTUExPEMe5IGtxxdHC/C+kq7NPCcXE9cc9kWFYi+rbJXFNj8UblvNzdEIKhP3xutp/FdQL oxt1X+DTSDP6HfBhYPc2X/Ncwqs+sI3ghMN8ZDMKYl6/C2hOoOJpUWoDfQRfkjuHNoSF5dfe jeBDQKbgjVdM0vgCyUvDcbiSyjz7UbmgwOhG0b3OG2wg+R11eoDvEI57vh84LqB5vojgPHJX BzQnUOBmlDfXM0igBEU3yvhfgjauQvk9vkKwXshRwF+JXzjVG18K8HMGyXy8pqDr8Olw8rvb DCHvjaNaTiZY43sYDKLyv9cQfG5cD0qGDYLNBHf8CrJDT9SBmxsIzjOZR2aB/0SeqO7y/+2O vLH/jQKNg2AAhf4kkWMYJok4Zl5PJZq9iExOgXegHo92KEcqLiUdnaGnoATloDWtoEpH56gk HLczn6DrHEVdSeOmAOd+KEpMH2mt3h7g+32eZBreNxJsGFIQdFHx/JdQDOFEv3/czHl+GzKM OeyDAjWTzkbgfSgANcjuP0cTjD2khMqWtLvDPIG3EW47jCb65OfADK4or3SkAMQu4LUEZ89K ajftCSh5PkmcgFeIXkUT69fsF/ZTKoFyOWQjSIOWtQU4H2X/O2VY22UXgjNoXg/c2sbfDwJf R6kiQTCL6AVWw3ZOTeDHFjaL4ARWUr2EeaRUJMXw3oVkhjOfPpTE75tmv7CH8ZZ+OBY4vMnX iItB4PuoTvfVtH+D9BJcmtIg8FFabx3+W3SsDIq5RC+wgrIpgeIGG7GC4GybQc49SJy69EmZ 30tQVy6HG4gg8La6DdjPwn7DEOgCTgH+D3+VEeqN9QRfE+kEvIX4G40i0s6CNpB/tIk5BDXc BSPbZX9GDhUZAP4hwPf7Ism0YTnjuAA/azv8iMqcBokovzGHN2GxH7kp08go4Cjgv1DU7Xb8 1zQvUumQHSSHITfvToa/CYpIYH4ZORWCpAfFw0V9Uz1EcB6tHLJb9tV5nwHgewSXrZEDrqjz PkkaSYjHmoP3+7iHCCPw30blZkpqYbBmmQm8HLnDr0QCo9GF8H3CuRDGA29BAbpr0BfdjwTq UtQU5HDC+cLnIc9No88+WJ6TnzFAYw1kJYpJC4o8KrR3N9Ki+5Bj4uME25NvFIp2j1sojTRu J/5joVsLLaIslsiYBCymsiDPEezFFje9+LsInyDYYMdq8kjrmIO8sjPKcwtzt3wfjUNAhoD/ QEcvP+NteFuQ1xv9KG4oaHpQuZy5yPsZNNPxJ+DjHGuBg0L47H7ZDW82wFKCPxk05Hy8u+bn op5AyHyaxsfDnUS8U4RMHpUhaXQDbKa5VIrdaZx+VES15NPGK6h/9EzSKADvCmsBfHCRay5F dIqJnIl4U0o2o50sK7wMf8UAbye9LeqreTn+8i9vobkjxngaB6IWke0uDWEyDjmUc5lkg7sz fhPSGjRiJspicOaxhgZF+sLkArzn0kvimkgIjAf+TuMLYSfJrObYLL3IZtbo5iuikirNkENx Yo3WcjvpcuBMQAUj4xZGfsZy4qnk6hboReDiGObwAtNQfSxnUdahGldZ4Xz8XQy3E2x99zg4 jcZ2phKyh7TS2PQ0H69dAj5J/B4tv7wK2d7iFkZ+xhA6vkbJfLyNYZ6k/UKVbXMe3oX5WrzT CZR98NeJZ5B0NE4YDj9HNmeH/CWtHYF3wd9aPoKi0JNONwrYjVsQ+R1xnIAuqZrDxyN+/7pU VyTdSna0rDzKQfRjo1hNOj93Hl1IfuLP+vBGKjdDF8rKb7SWQ6iTStJ5Bf400iSN2wg2pGMk 5iG7tvPez5CgU8i5eM+pPySZZVlb4RC8RsORxm9pIvM8IRyDglD97NDX0d73ejr+4tueRaEc SWUMqoHlx953L/6DkcMemwm+t2g98ig41y0TzovgfX0zGdVfdxYmyAJ3cdOFFt/PBTGIajCl xQazO8oP9fPZdtB+dY4JwAM+3+9HJNP7mgPOwZ/WvQllUvzE5++HPYaA9wa/JDUcjTflbQkJ bN32Jrw7ya0k84JrhT3wHxzYj+xZQZfiDZoZwJ/xdyMVUc5obwDvey7+apP1A+8O4P2C5kj8 53v+BgWrzgce9/k3YY9fEu6G2g3c6Hq/Iso4SBxd6MjglubvjHVGwfIR/BcB3IpadyVV05qK anD53fVX4W0Y0A7T8HZLGWmsQxpKUpgD3If/jcsduf8WkuFRXEO4tqQz8cby3UiCzUNHoNpT zmQfJ/pSu2ExCVUU8HthbAHeQ/K+rGlo5x/Cn8AaQtUbghS+78Nfl+siSuMIsqt1q8xAG7Jf jfQXeINgu4HLid+eNUh44Q3T0PflvNdWdDxMNN/Cu0Cfj3c6gbKA5vLG+lDOXdyJpw77IqHr V7MqIkdC0DvyOFQLye86LkW1lOJiJv6FlaPFHFjndXZFzVfjFFhFdE+Gof1/quq9Lg/pfQJl V7w39SZUMiUL5JDRshnVfhD4NbKDxUUPKvy/jOaMvysIL/L8KHRt+L3JnkY166PWWA9G4QB+ 161RWMahBNclqdVxB8GHNxyE15v+PO216ouUD+JVfW8guPpDcdMDfIPmVfvHkV0r6nWYhbTe rU3OdwPwmhDnlUdR7c00B9mE0sGiiOfpAd6IUlqa0V6uo7Ew+Ee8MUpRj6CrN/TiraFWIB2x dC8wFm95lgLyDmWFCeio1KyregB9sccTvgd1Mmpd36xWVUIa5HsIX50fg6q+NjO/IXSsPZZw tK0cCgD+GTrSNzO3ZcCLfb7H+2m92m27o0iwHtiz8W7gYWhwobMQb7WDVcCesc4oWHahOSO8 +2LZgY6JryH4vnGz0e52P63F/vSj5Oaojl7z8R+b5R5bUXzTEQQnWPcALkXXarNrtwk4tYn3 yqPvKS7PYVBNd+firXXVR7I8u75xSm84kreIFikrsVkg4XA9rQmGIor6fgQFmx6PPFHNHBlz aCebB7wZeaaeQ2veypwGUJpO1N/RQUg7aWUNtyLX+XuRwGlmZx+NvsN/QL0r19Laum1FddGa FZxdKAi12eN6EONJtOm2QxdaN2fNCqjbdGiaedgq/yRUO8k5LxdQPEqQLdXjZjba6U+gvWDR bchQeR+KDF5WHmuRpjqItLEJqILjPkhQLQD2RpUv2xE0faj29yWE0IXXByegNnKtVnAtoLV6 FHnilqHNYB0KMSki29cU5C3dB6VdHYJu3FZtizuRXc2xazZLF7Jtfo1oq3AOoGoTN7TxGq9F 97ITvrEE1VTb0N7U4uV4vBUZVxCvxywMJqD67kF1ly6WR6H8mkNIiDiPC67fCeL91gFvJX4X 9EKaM3I3s37uEdTabUYaUhDH52NR+EZUKTxF1MSkVebi/a76SUdj5YZ0Ad/B+0VcS/ICKttl FCr96g6cTfooolzC44NfjpZZgBKGk5B7N9K6rUPpaEGmYM2jNWdOq+M2WosR7EIdm93r8X0y dE9PQW2c3Iv14VhnFA45ZAS+n/gjmhuNPtR8NfaCanWYhmwjfqLhox4FdOQMK5B1NPIgtmL4 b3ZsR8fjZvnXqtdZQvSNd0PneLxew/XoCJBFdkOG9M0kT1MoIvvO2wmni0xQjAP+DWkySVjD IhLy3yf83gU5pGleg45aYX3+IeCsJud2KLIVOq8RRBWPRJJD3TPcmsf9JKioVwgsBH5HMrqq FNGFdgnpyu88AOU+xpk47NS1Op1o7Xw5ZNheRHD20erP9ckm5jMWb5+DAvAZ4rd9hsYYavv9 fZXkl2Jph17gFFTKpdlAxCBGAXkf/wup/2m8uHpRzNrt+GvKGtQYQr0nP0C89ZzGobCVGxm5 I3gr14bf0t55akseJ6FBa+jsj7eeUD/Z6u03HKNQ5vp3kac0jB3TPfpQO/ALkDE3jYKqmnEo J/JaFKgZluDaAfwNZWckyTYzGhXGvBxdQ35aso001uG/ocgZeLXcuJuzRsq78S72JhQP0wl0 oS7Z70DF1J6hsmu2egM6LvytKA7p6yhReFJEnylqRgOHo6oDDyLPbKvBss7abUfa1HeQRjwh sk/TPN3ITnoGSiF6EgnZZtZgAB0H/ZxuDsRbRnuImJquxLXr5lDZ4bNd//cgSm1YHcuM4mM6 qghwBDJo7oESlqczvFG8hG7StSiyfQmyLdxbftwX7pQTRQ+6oV6KUkL2RVUCZqD1q3eN70Ta xWok4O9B+W8PIsGVNiYiW98haB32QgJtOhK87nCDEmoacxnS9gcavPZM4E94K65cgTpJl9qf enPEeUyYjGJOjinPo4S8Im8hnkjrJJBDNoEJ6PgzDq3TGLSr7kQ31Obyv9uQVtXoouskRiPN chxaxylUBP92vOu3lUoCcpbopXINjUHX0FhkltiINLJ1NP7c3UiD+0cq9+idyPmQ6mj2Vqmu lV5AibdZsLcYRprJAR/D69V/ntaa6GaKV+NN/tyBtCzDMOLjDXj7Lm5HDo+OJ4cqBLgNghtI aYkKw8gAC6kcGZ1xEXbyeYEudFZ2eziWE1ynFsMw/LE33qKPRZQ32D3SH3UiU/D2Mysh7830 OCdlGB3EVBR/5r4HbyFZsWiJYhe8nYiLqKRw2tq/G0baGI8Cct2nnKWEnzeZeg4GVuIVWpdj KqlhhEU38G28wmoV8bZWSxXH4m0BVUCdX4JolW4YRoUelM/rThXbApwY56TSyFl4qxwMAV/E PBWGERQ51PzULaycjklGC5yDorvdQuuzZLu6g2FEQR6FKriF1QDqKWq0SB64EG/lyQHUHsk0 LcNojRwqmeO+rwaBi8lQmeO4yAGfxrsT7AQ+hAktw2iWHLp33KVihoDPYSeXwOhBHT6qz9of wRbZMPySR5pVtbC6DHNoBU438E28rtcBZNMyTcswRsYpUe4+BhZRmacsNTdOFGOQ0HJrWkOo AajtEIZRnx5qvYFDSFiNiXFeHUE3tcfDISTILLjUMLx0Uxtn5RwDTbOKiB5kiHertwW0YyS5 tK1hRMl4FMHuFlaDyMBuJ5KIyaGQB3ecVhH4A5YwbRhTqc0NHEChC+aoiok8Ci51ez2KqL75 fjHOyzDiZG9UdcEtrPpRUKjFWSWAd6A63e6yGE9hRQCNzmMhqmflvhe2YOk2ieNY1EGmunLp m7GwByP75FBZ43XUVl2wROaEcgjeelpOjfgLMQ+ikV26UcMIdw12p56VlYhJOLugyqXuXaYA XI36/RlGlpgJ/AJvd5siqhRqxfdSwhTgSmo7/D6ACgQaRhY4EDXPre72fBVW1jh1dAEX4G0h VkKNJM/CXLtGesmjNvXu9vFOK66LMPNHasmhLrWrqHXxfhkF1hlGmhgLXEJtKM/zqG+gOZgy wB7AIry7UQm4DzNKGunhUBRjWH0d3451ZM4cU4D/RqkJ7i97HaoPZAF1RlLpAv4VWIv32h0C foSi2o0MkkMBdGuo3aWuAebHNzXDqMtcZESvvl7XAu/HjoAdwQHI7et2BZeAp1HwnRktjbjp Al6LOqC7r9ECOgIeFNvMjFgYgxJBt1OrZv8K07aM+JgL/C+15osdwGeQ4d3oQHLACcBivF7E IkrzOQcYFdvsjE6jFzgbeJba63EJcDJ2BDSQ0fJ7ePsgOur39cg7YxhhchDwR2rNFP3A97FA UKOKLpQkupjai2Yjqh1vdbaMoJmGyhdvoHazfARpVebBNoZlCvB5am1bJeAxVMrGSssa7dIN nIkSlKuvsz7gS1i4guGTHHA49T2JQ8DNwDFYeo/RPHngaJSgX21ULwB3oDpuZqsymmYs8GHq x231IduCeRMNv8xDttId1F5Pz6M+m+PimpyRHWYD30GVG6srQGxGXUn2jG12RtKZj/L/NlNb WWErcDmwe2yzMzJJDqnqf6H2mOjskF/Eam4ZFWYiZ83z1F4vRXQsPBo7/hkh0gW8hdrYLeci 3AD8B/CiuCZoxM5uqMzLBupfI0tQeRjz/hmRMRn4APAMtbtnCQWeXoIJrk5iDtKyn6X+NfEM cB7m/TNiZCxwPupUUm837Qd+DByB5ShmkS7kUf4RcsTUuwaeBD6O1V8zEsQM4N+B1dRetE41 yN8Dp2BHgSzQBZwE/I76MXtF5F2+GNmyDCORTEa76SPUF1xF1NnnfMyzmEbmo2PdQwz//S5F m9fkmOZoGE0zGXg7cDe1AYLOhb0O+DlwKkp8NZJJL9KmrkR1qOoJqkHgHpQJMSWeaRpG++TR MfAa6gcMOmMpOj4cjNm6kkAXqpv2CaQtD/e97UDHwtOwo76RIbpR1YevASupH8vlBBLejaKe 98byFqOkB635R4A7UaBwPW2qgBqbfB04DNtgjIwzESW+/onakjbuMQDcirr6Hojt4GHQBeyP UrBuRms+3PfRD1yH2sRNjGOyhhEn3UgQfQGVwh3uZikizesB1J7sFSiWx5KvmyePbEwnAJcC 9zO8JuXYplaUf/dgTOM1DEBJr6eghOrlDL/Lu13mv0FVUQ/EjPYj0YPsUe8Hrmb40JPqIM8f INvUhOinbNTDcpiSySRUvuaNSIjtwvDHQcfwuw64C9lebkWBrJuQvaWT6EIe2vnAy4Ejy2M6 CvId7povoJy/vwC/RGu4Ga2vkRBMYCWfaejGOwU4DtiPxrasEtLAFqPGmw8AjwJPoKNllhgP 7AXsi45sC5HGOYvG13cRrcvNyJ54K2r/biQUE1jpYjSqqXQKit1agCLs/QiwncjAvxwFPT6I BNqTyIazHWlqxeCn3RZ51OFoPDJ0z0P1zw8u/zu//PNRNL6eCyiO6n4koK5D69EX/LSNMDCB lW5mIrf60ShX8SU036xgCFUVeB7dzMtRf8YnkZa2AR0t11Op5xQkeXQEnoqOclPREXg+Ek7z 0OecWf5ZsyEEG5CWeRdwG3Af+lxGCjGBlR0cTWQf4FhUu8vRwCbR/HftGPcL5X+LSLhtRPay 9ciDNojc/QUqgbHby68xrvy+Y5CgGY0M4D1IsE5HHrvu8vzzSFvMtzjfLUjo3otseYtQQK6T lGykHBNY2WYsqs00Hx2fDkL2nf1IfyneHUgYLUZH3IeAp1Bplx0xzssIERNYnUcehUDshQIm 57nGbkjjmVgeccV5FZG2tAVpdCvRUdUZS4HHUdyaaU4dhAksw00XEliTqRzZZrgeu4djT+ot j2509MtR0d6csit96Dg5UB6O3cw5Wq51PV5Xfr4e2c420nmhGcYw/D/w0StE1ufYEgAAAABJ RU5ErkJggg== iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAYAAAB5fY51AAAACXBIWXMAABcRAAAXEQHKJvM/ AAAgAElEQVR4nO2dd5gkZbX/P909MzuzOZPZHfLC7oJEyUkWEC7+rgExACoiiFwD8ojiNSCK YEBFEMUAen9yMaCIAgoCkpEgObOBsCywOczO7kx3z/3j22VXdarqVFXdfT7P8z7bvZ3eqXrr 1DnnPSGBYeRJABOASbkxBZhaYkzJvW8MkAJGA0lgbO47xua+bx0wkvs3C6wHMrl/VwPLCsZy YGnu35W5sTr3HYZBIuoJGKGTBLqAGcAsoD/3uB/YCpgMjEcCqSuiOaaRoFoDrABeARYCL+X+ fS73bxoJQqNDMIHV3owCNgdmArsAu+b+3RkJpFZmNfAM8BTwGPAkEmiLgY0RzstoIiaw2ock ElDbAgcC+wJ7ApsAE3OvV8NIbmSQFpPNPV5L3mQbBIZz/6bJm3zrct8xlrzJ6Pzblft3IjIv x+VeS+ZGCq3LatdmFlgFvAk8BNwH3AXMBzZgmlhbYAKrtZkCzAH2B/YB9kICqprz6lzoS3Nj EfAyutDfQCaZ409aReO1lx7yPrNJyCTdBNgGmaozgGm5MYnqBe8bSID9E7gHeBz5y4wWxARW azEK2BI4ApgH7I0ubj9f0wgwhDSNV4EnXGM+EkYDuZFpxsTrIIWc+2OQVrYtMBuYi4T1VkAv Enx+6zmNNLAHgb8BtyD/mJmQLYIJrPgzHtgPOAo4GF2sQQTUcuTf+RfwCHJUv4CEUzsxEdge 2An56HZHx2gqwQTYU8AdSIDdi7RII6aYwIon45CJdzwSVJtRWUgNItPtYXTR3Y2E0wp0UXYS Xch03B758t6KfHmTke+sHGngdeAm4FrkA1vT1JkaRgvTBxwKXIbMtBGfsQz4C/Ap4C3ILDJK MwppX58Erke+Or/jOx/4MXAYOjeG0fF0ATsC56ELZIjSF08W+ZeeBn4IvB2ZPKnwp9zyJNFm xVHAD5BJ6AS2ljr2Qyjm63wUtxZVbJphRMYYZO5djwRRubt8GrgfOBfYDeiOYrJtTjfSvs5F ZmCa8udjPXADcAL5aH7DaEtSyBl8EQpwLHdhDCBH+X/n3t8TxWQ7lB7kvP88OgcDlNa80mh3 8dtot9I0XaNtSACHAL8jn1tXarwIfB3TpOJCNzoXXwOep/x5G0BO+sOwTSyjhRkPvBcFKw5T 2i+1EvgDcBzmNI8zo4BjgN+jnddSWtcwMt/fR+unPRkdxDjgMyiiutTCzqI79rnI4W535dZi e+Ac4FnKn98ngc+itWAYsWQyWqSLKb2QB1Fk9bGYydcOdAFHA39FzvhSgus15A+bEtEcDaOI UcCZKJK8UFBl0bb4NSiI0QRV+9GFMhF+TT7JupRG/RksnsuIkPHAaShGp5Qz9nXg+8B2UU3Q CJ1+4LtIsyq1JhYCn0DpRIYRCkngP1F+Xobiu+lq4Jto8RqdydZox3c1pTWux4F3Y+EQRpPZ E7iRYkHlpMp8F1VTMAxQ8cSL0NooXC8Z4GaUM2oYDWU6SuNYRfHdci1wKbBDZLMz4s52wPfQ WinUuNag/NHNIpud0Tb0IZ/DYorvkBuAX6FtbsMIwnbAL9DaKVxPS1Aie6WKEoZRlt2B2yhO oUmjEi6HYT4Io3pSqK7Z3RSvrQxwJ6oca/F5RiDGA1+hdBrNAuBULL/PqJ9u4MOoblmpdJ/z sYh5owJJ4CDgUYqd6quR83R6ZLMz2pVpwDco9o9m0G7iIZgmbxQwEdWZKoxYzgL/QCq6YTST twC3UnyzHAQuR1VUDYMDkVbl3r3JosDPT2NJyUZ4jEKbPEsoXo9PIG3LfFsdSi/K81pLsVP9 OixMwYiObVHJmkKn/ADwJSzFp+PYEe0AFqrfi1E1Scv5M6KmG0XDv0zpncRZ0U3NCJOTKZ3r dQMWU2XEj21QKe1SuaqnYCZi2zIBRRQXFtNbAXwOay5gxJcUcBbqNVlYNPAKLJm67ZiBdmAK 0yKewHK5jNZhL7RBVKht3YE0MaPFSQBHUlxUbyMKYxgf3dQMoybGAhejNezeRVyCyjibidii JJEavYbiINCPYsF4RuuSBD5EcbDpWlS+2dZ2izEBuIrStbb3iG5ahtFQdqV074BfY4GmLcM0 VGfIHbKQQTstm0c4L8NoBpuizkvu9Z4Fbgc2iXBeRgBmA4/hvdusB76KxVYZ7Us3arxbmFr2 FGr0asSQfVE3XvcJWwl8ANn8htHOJFAfzBUUB0MfFOG8jBJ8AAkn94l6GeUJGkYnsS+wCO+1 sAo4KcI5GTmSqD7VIF77/VFglwjnZRhRMgt4GK8zfhA4A7M2IiMBnE1xudlbsLpVhjEVuIni +MNzsVit0OkCvog3eC6DQhmsSqNhiPEodce9gziEbUKFSgr1/XPnBGaAH2Oliw2jkC6UQ+su VZMGvoPlzzadUahdkvvgZ4Bv5V4zDKOYHnSTLxRal2K1tZpGCgkrt3o7jE6EpSIYRmUSqLHF EN4NqksxTavhdFF8hxhCFUNNWBlGMJJoo8rt+3XMQ/NpNYgEcrC7fVZD2G6HYdRCAvUqcO+u p5Ej3q6nOil1RxhGmpUdXMOoDSckyG0eOkqAxWnVwal47wQZzGdlGI0giXxabjfLRhRcatTA B/BGsDu7gSasDKMxJIAL8AqtDajvgVEF++LNDXTirCx0wTAaSw/aKXTvvq/GEqYDM5viqgtX YUGhhtEsulBEvDuN5zVUINCowDS89ayyKDfQ0m0Mo7mMA27EK7SewooAlmUCqhTq1qwexRKZ DSMspgIP4b0Gb8fKLReRRGaf245+GSsRYxhhsxOwEK+VczW22fVvEqi7TWGlUCu+ZxjRsC/F lUst9jHHkXhbca1HIQ2GYUTH8XhrxK8Fjo10RjFgBqo57Q5f+CoWbWsYUZNAke9uN80SOrjD 9AS87eOzqBWXJWEaRjzoAq7Fe43eSYc64S/Du4X6JNY30DDixqYUt877KR3mzzoZb/WF1VhH ZsOIK3PxZp4MAx+NdEYhsiOKonUnXHbMH28YLcpJeAsRvEEHhB31ArfhVS9/iMV4GEbcSaJC f+5r9y7avMTy5/HuOjyBOnsYhhF/xgKP4N3V/zJt6s86EMVyOH/sCmCfSGdkGEa17AEsI38d DwCHRjqjJjAR5QW61cnPRTojwzBq5dN4r+UngcmRzqiBJJGfyh3CcAPWqcMwWpUUcB3efMOf 0Ca+6IPwhvgvBraPdEaGYdRLP/AS+et6EDgs0hk1gPF4TcE0cEKkMzIMo1G8E2955Sdp8Sj4 r5DfFcwiNdJSbwyjPegCfk/e3ZMBvkGL7hruDqwjL31fB3aIdEaGYTSafryB4APA3pHOqAb6 8AaIZtHOgmEY7ccZeOMr7wJGRzqjKvkEXtv2HyjK3TCM9mMU6r3gDig9K9IZVcF0vDWuVgN7 RTojwzCazW54E6TfoEWqr/wAb1DZRdFOxzCMkDgf77V/OQ12wDfam78n8HfybbkWAm8F3mzw 7xiNoxep9JNQqydrVmu4WYOc6usCvHcqcC/5OMu1qAT6fY2aTCMFVhL4C3B07nkG+Dgq9mXE ix5U42gesB8wCyW2dmHlqQ0vaWA+8HWUoTLi8/6TgZ+Tj3q/FQmtTLMmWCv/iXen4F6sW3Pc GIOC/W5Fd0x3upQNG5XGSrR2/OgG7nB9LgO8N8DnQmU83rITG2iDMP02Y1fgz3jTpGzYqGbc hzRxPw5EqTrO555EBRBiw2l4I9p/RZskQrYBXcCHUMeTqBe8jdYe6whWZTQJ/Axv84pPBvhc KIzC2yl2LZbcHBe6UDzMANEvdhutPzJoYy0I/SikyfnsKzQgmLQRDtZTgZmu578EXmjA9xr1 kQI+BVxAi0UdG23BQuR8d9gSOD2iufybycBz5KXoMixfMC4cjTeX04aNekc1GhbAtiikyfn8 fGBaFZ8vol4N68Pkzb8RpF09X+d3GvUzE/g+2hU0jKiYj7SskdzzfiLskDWO4hScLaOajPFv ksAleENMbNhoxKhWwwI1Yl3h+o7XqWPHsB4N66PAZq7nPwJereP7jMawIwreswBQIw68jkqk O0xHUQWhMh54HK/U7A97EkZJLiL6O7GN9hy1aFgAW+OtmfU0NWpZtd6FjwZm5x6PANegXQEj WqaRT40yjLjwMvA/SFYA7AT8R1g/ngDuIS8th4DtwvpxoyL7YZHsNpo3atWwQFqWu9X9g9Sg MNWiYR2MtwTqH4AXa/geo/Hsh+VvGvHkZeA3rue7AW+r9kuqFVgpVE3U6Sm4Abis2h81msYs zNluxJcfIQsAJEPOoMr+pNUu7ll4fSR3A/dX+R1Gc0igHZiW7FhidAQPo3LpDvPI+8IDUa3A OpF8MOIIqi46XOV3GM2hCzX/MIy4kiZfkRi0Xk+u5guqEVhj8DZBfRH4WzU/ZjSVJFWq14YR AbcBz7ieH4/CpAJRjcA6Btgi93gEuArTrgzDqI408AvyWtamVBHiEFRgdQEfJF/jajVwbdAf MQzDcHEdStcByaATCWgdBBVY2wKHu57fjiU5G4ZRG/NRsxqHg1EwqS9BBdb78dZUuoq8SmcY hlEtV7oe9yIZ40sQgdWHzEGH+cDNwedlGIZRxO2olp7D+wlQDimIwHorsJXr+TUoYNQwDKNW hoCrXc83B/b3+1AQgfVu1LoHFKX6+6qnZhiGUcx15Bu0dqMQh4r4CaxxwFGu588BT9U0NcMw DC9PA8+6nr+NfNf4kvgJrH2AbVzP/4DFXhmG0RjSeBOiZ6CehmXxE1huFS2DVDjDMIxG8Se8 StC7Kr25ksAaj9ccfAiLvTIMo7EsAh5wPZ8HTCn35koCaz/yNdtHgOuRZ98wDKNRDCPZ4sR1 bgIcUO7NlQTWUeTD5QeBGxsxO8MwjAJuRN3JQel/88q9sZzAGoXC5R1ewnYHDcNoDs8AC1zP D0bR70WUE1hb4i2sdSu2O2gYRnPIALe4nu+EmgEXUU5gHYE3e/qmhkzLMAyjNDeR92OlkAwq opzActuQy/F68Q3DMBrNI8BS1/OjSr2plMCagrcrzv3AysbNyzAMo4hVwL2u57ujHgUeSgms OWhr0eEWZGMahmE0iyySNY5ZOA21AvNQqsrf/njDGe5sxuyaQB+q2dUuXWNGULL5YNQTMYyQ uBOt+THIj3UABaWsCgVWEuUPOqzAWzA+jvSizhvvQDXnU5Xf3jJkgMXAb1G+lQkuo915HlhG vi7WPkgmZZ03FAqsUcBerucPE+/aV2OA7wGn0J4NROegDPa9gU9hoSVGezOENvhm5J7vgSwn J6i06CLfFq//6l7izUm50Y7CCmTedgMfAo6MdiqGEQruxsxTgB3cLxZe6AeS9wGNoM7OcWVn 4KtIK2x3+oBjsb6DRvtzN95+EQe5XywUWPu6Hi8HXmjSpOplDPANtJPQKWxG+/jnDKMc84E3 XM/dMskjsEYBe7qeP0W+d1jc+AjwdtpnRzAI7Wr2GoabVcCTrue7IwsD8F4Em+P1X/0LVQSM GzsD5wA9UU/EMIyGk0G19xymodxmwCuwZgITc49HUKh83BgHfBMJV8Mw2pPHyPuxJgD9zgtu J+4u5AXYEN6eYXHhRJRjVMkUHEGxHH/Hm5vUDKahsIOpPnMyDCM4zwMbUYxlAoX33AxegbWr 6/EG4udw3wX4b/xNwVXAe4A7mj4jcTAqQDba742GYQTiBRQo7dTEmuO8kHT9u4vrA68Sr4Tn scAFwKY+70sDFxNuOtF9eJ2EhmHUx1pU691hNjlZ5QisLuTMdngilGkF5yTgaPxNwTuBS/HG cTQbJ+fPMIzG4ZZBO5GzrByBNQNvA8M4Caw5wBfId58uxxrg88gkNAyjtXnc9XgMsB3kBdas gjfHRWCNAc5HSc2VSAPfwbsdahhG61LoZpkFeYHV73ohi6JN48DJ+JuCIAd72KagYRjNYwHe ONCZ4DUJHVYRD4f7LsgU9NsVXJt7n5mChtE+rMGbaTMTSmtYS3GVc4iI0ShANIgpeCFmChpG uzEAvOl6PhMksBLAVq4X4iCwggSIAtwFXI6ZgobRbqzHG/i9BZBKot3Bya4XFhFtDfe5wJfx 3xVcBXyOeJivhmE0lizeWKxJwKRk7sF41wsvhzipQvqAr6FSKpVwAkT/1fQZGYYRFS+5Ho8H JjoCy4nBGiHaHcIPA8fgbwr+A7gEV61nwzDajgXk3T3jgSlJVIbUySkcwVs8K0zmoMBPv6qa q1FO4eqmz8gwjCh5g7xSkgSmJlGlAYcM0RTt60W7glv5vC8NXIR1ojaMTmAFXn/6tEKBlSV8 J3YCBYgGabJwF/BjbFfQMDqBVXjdPlPiILDmAF/C3xRciUxG2xU0jM5gOV6BVdIkDDNivBf4 Ov4VRNPAd7EAUcPoJFbjTc8pElhrUaW/MEigXcGgAaKXYbuChtFJFFp8U51dQoflIU5mLnAu /qbgitz7LFfQMDqPZa7HU7vw1sEKyz/Ui8rGbOnzvgwqG2O7gobRmbijFiYnUc0ph8EQJuA2 BSvhVBC9HDMFDaNTGXI97kri7SY8HMIEZiMTr1Ku4AjS9r6ImYKG0cm4ZVJPEm+3l2ZrWH2o xbxf2ZgsMgX/2eT5GIYRbza4Hvck8TZTbWanZ3eAqN+u4D3AjzBT0DA6HXeke1cStdByaGb3 l7koB9CvbMwyVDbGcgUNw3DLpL4uvNpOs+pg9QLnEcwUvBh4sEnzMAyjtXCn4SUKNax1TfjB BHAq8PYA730e+BlmChqGIdzVj8cky76tcewMnIN/gChoZ7AZQrOZJIBxUU/CMDqBJF4BMbbc G2tkNGoSsQX+jnaAXYH/wBtqEWdSaL6zo56IYbQp7jjRgS68NmIjBYWzK3hEFZ/pA34CnEZr xF9NAPYARkU9EcNoU9yKzkgX0rCcmu6ji99fM7PRrmA1F3MCmAgc1sB5GIbRuvS5Hg8m8Tq4 G6VhdSNh5Vc2xjAMoxJu33c6iTfOoVEa1o6YlmQYRv30uh4PJSmIJG3Qj0zF2+vQMAyjFtyB 5kPN0rAKU34MwzBqwS2w0km8KTATQ56MYRhGJdwFRlckKajoF/JkDMMwKuGWScsKBdY4oCfc +RiGYZTE6UzvsLxQYKUK3mAYhhEVE/BuBC4tFFiFEs0wDCMqJuPdvFuWxNspxwSWYRhxYSJe gbU8CSx1/YeZhIZhxIXJeLNvliVRGx0neDQBbBr2rAzDMEqwCXkNK0vOh7WCfCxWAtgmgokZ hmEU0k++WsMacibhqtwThxlhz8owDKMEM12P1wCrnEh3d3fVGbROAT3DMNqTJF6BtRJY6ZSX ecX1wjS8Vf4MwzDCpg+Y7nq+GMg4Dq1FrhdMYBmGETVj8QqsRZD3wL/kemESlgRtGEa0jMdb omoR5AXWAtcLSWDbcOZkGIZRkpl403IWQV5gPVvwZusCYxhGlMwpeP4s5AXWQrx1seaGMSPD MIwyuGXQeuAFyAusNPCM6w2F0s0wDCNM3DLoWWAIvGHvT7nesBXmeDcMIxrGoih3hyfJdfdy O7Uecz3uBbYHHmz61AzDaCV2xdv7IQ28huKkhhv0G9vh7Uf4hPPALbAcKZZEVUd3wgSWYRh5 EsD38fYyzaK0mZuArwBvNOB3diTfgHkEl8By15p5iXx7+ASSpIZhGA4JZK6Nd42JwNbAx4Cr UJXQepmLN+l5ofOCW2AtBt50Pd+dxvUpNAyjvUkAhwLH1Pk9KWAv1/OlwKvOE7dA2gg8hExB UCzWJLwF/jqFLLLN07nHzkggIe/825UbCfJ3hGbRhe5eQ2Ve78aS1uPCCKoxl879m839n+Ny SaBzlULntV3OWzfq+H51Hd8xEW8c6L9w9U4t1KDuAz6YezwVOd47RWANoViPJ4DnkBrqaJ0b 0cJLoJMymrwqvCXaVd0e2Bkdt2YIrwOBeyq8ngA2b8LvGsFZjnbbn0Jr6WXkkF5N/uaXRP6Z yWjtbI2UhF2AWTSumXEUJKg/uqAfbxHR+90vFgqsuwp+/EDg3jonEFeGkTD6B3AncDNqyLEe r1MxKKOQfb8JOm77ItV2a7QI6+2EPQbtnhjxYAQYRMLpTuCvwKPAOmBDld+VQGtkAnAQ0lIO RTfCHpqvvTeKRszzgILvubPSm0cDr6OTMQL8scYfPcz1HXEaWaRJ3YOchP00z0+XQtnmbwW+ DjyQ+23HPLDRmiOLajP9FDgcb4Juo0gCWwDHA9eTv4lG/bcHGb+v82+/xvVdy/GpHJME/uL6 wCvktxerIY4Cax0SwIcTjdo9BmlcP0Q7ssM+87URr5HJnbevohtdvRpzULqBtwC/QIU24y64 6hFY3SjJ2fmuvxHgOH/J9YEBagtviJPAGkam7jF4g9GiIoWqup6NUg7SRH+MbJQfTpzR95Cf MirzrBtp639CPtWoj0u5UY/A2gUpFs53nR/kQ4fhvft/soYfjoPAyiKH51nItxRHpiDBtYD4 3zk7caSB24D9CU+j8qMXOAFtDGWI/hgVjnoE1unkr4M0cFSQD01Fu2POBK6n+pMVtcDKAHcA uxF/h2UC1R+7Gjlro15wnT6cEJY16A4/vvypi5R+tGbi5lqoVWAlgWtd37MEbWAF4jrXB5ci TaAaohRYG4GLa5hz1PQCp6AgOTMToxtZFNJyLPGPjxoNfA5lqER93JxRq8CahHfD76ZSbyq3 Q/Y34B25x1ORs/ivNU4kLEaQ/XsecAm1J2Km0EaDE2e1BTIp+3K/sT73O68iJ6yzjV1LKISb DcDPkQlyDNK6qrlgkuicbVnnPDqZERSo+LHcv7UyCq0XJ0Zvcu55DzrPAyiEZhEKrdlAbet1 PfBdJGAvQRpJ3C2KcuyGt4Z7SXlTTmDdgu7yzutHl/uCGLEWOBOpyRmf9xaSRM03DkWOzQOQ oBqNFloKbymeNIrBGUDBgf9AieK3IVOiHuG1ELi0hs91I6elCazaGEHhLifibcoSlF6UznYA iqWaDYwjL6icCPcRtD43IoGzCvgnCtq+DZhPdcIrg7Sa5WgncUYNc48DR5MXtlkUFxmYUSgI zlHPnkIXRFDCNglXAR+m+rvLKCSgLkEa01CNv59Fd8kFaDdpN7RIw2QUEpxRmwStOLJIWM2s 8pg72QVn5j6/lto3TzIobOEGlG1SS8T4wegGGuUGTi0mYQqvvHmaGnb0f+D6gnVUF94QpsAa Ak6jevPpABSktpLGnuAsUvd/haomhqWim8CqfTxO9Y1XpgHnoN26Rju+NyKt62Sqj4M8Gq2/ qI5lLQJrFrJMnO+4vIbv4O3kT0QWOLeKz4YlsIaAC6kuWn1r4Dsov6uZdyJHcH0N+QGbjQms 2sYrwD5VHOde4N0o57TZYQVDyJ+8L8F36hPAqcjcjOJ41iKwzsIbzvCOym8vzURkJjkTuY/g Zk5YAutPBK+/k0Ba1aOEG7+SRiEWuwecZ62YwKp+DALvI7gWPBHd/d3BjWGMpSgeMqi21Y1u ylHEaVUrsLrR9eF8/jXq2OG/wvVFafKlZ/xotsDKIseou+5zJbqRn6HR5l81830deC/Ny100 gVXdyCC3R1Df7Gzkp4oqWHMI+B+Ca+uTgbsjmGe1Amt7vL7jX1X5eQ9HFkzm8wE/12yBNQi8 P+BcuoD/RnfFqKPJVyB/WzOipk1gVTceATYLeGx3Q47gqNdPBlkVQcsI7U/4/qxqBdbZBZ8/ tsrPexiPdr6cL3uYYHekZgusa5AvwY9u5EOqdfcvjQTdCqSWL0Na2gC1B3cOAGfQ+KBEE1jV nYOgfpJ9gBepTVhl0c11FQo7WJr7dw215wNm0Xl2xyyVI4EqhYQpaKsRWClU78r57Cv47I76 mSdrUDzEabnnTqGxR6uYVKNZBVyEf82hBAoA/CzB1X7nwC1DsWgPoV2gxUhwJVBszVaoUP5+ wCHoIAf1g4xGi+g1lFFghMsIcCNyZvuxNQrm3Ybg53cE3SAfAm5HmtkCtG43ou366WhX8i0o 9m8n8nFaQTgQhc+cjkIpKs3lUlSmZvuA3x0mO6Gilw43423oXBOHk9dQskhj8aNZGlYGde0I YlLNQ3980O9ej5x/JyBHfpDfSCEH4WnIX1DNXXMJsGeA3wiKaVjBxhqCHffJSKgF1U4ySDB9 EwmHIDfJBLIU9kdBn8uq/L2LCKapn0F46V7VaFhfdP29wwRMdvajD0VfOxN6Hv/dimYJrDcI Fg82A207B/nObO5vOp76On5MAD5B8MA9R7VvVHKtCaxgx/wa/He7HVMqaHzVeqTJbEPt/ske ZH7eQHDhsgY4LsB3b4JizcI4xkEFVg/SPp3PvYysl4ZwfsGk/DpjNEtg/Qz/BZHKvc9PaDjV R6+isbXQZ6BFF2SxZ1Avt0b4s0xg+Y+1KLTFj/2Qn8vv+7KoptnRNG4jpRfd+JYH/JueIlg6 1lkBv6/eEVRgva3gc98K+LlAzMIbiOY3qYNofPTvMPIX+XEoWph+3zcIXEBzivpNRiEhQe6U r6FdqHrpQn63qIVCnMft+N/FxyFfSpAb3oOoh16jcRLZFweYRwatYz+2Q07/Zh7fLPDrgH/j 1a7PbaDBx7ELaQ3OD6ygshNvB7w1tRox7sF/sfUhv4PfQR1ClVWryY+sll5U9zuI0LqSxqTw /Ijot97jOtLAxwMcw/ehm5nfGnqA6tN5quVwVM3B729bgpSKSiRQHFcz18cw8IUAf1c/XuF5 M024Fk8gf/FlUR5VOZJIw2jUwRlEeVV+HI1/FHIGCYgwyiVPRjXy/Y7DCrT7Wi/7EGyBd9rI In/JNJ/j10uwYMvFaIev2STQuvczT7PAt/F3LRxEcFOzlrGAYLuRnyF/TWSAkwJ8pmrGojgJ Z3LPUjksYjrwW4L5AiqdiOUojzGIo9RdsbDceIjgAYONYDu8hfXLjSALzo8E0hCsCGB+DKH4 wf0CHL95+O/0riffuzMMutHOuN/fuRCF21QigaqavEZjI/bTaOPq6AB/TwrvhjtJ2z8AABHO SURBVNgSqth4qtYM+TaKTCX3Y8dQpjJgjj7kd9qb6uuqZ5HaeCva4fCrcbU1EkaV7qIbybdO CpOPo0VXSeg+i+6A9TauTSAhOQ8t4LhXzWwmQ+i43oRCBirRhcoMnU7562IE3RRPxtWNOAQ2 R41U+ik/tyzwIWT2VSKJtKAjUc23ejcL0khY3oirpXwF3oZMQOfv+CG19Y0IxFy8GtNfaV5u XLWcSuW7RhYJqlraltXLJOTzqHSXGgT+XwRzM8R0vFkdpcYAuvlGwSfx38j6C/GuOJoC/oxX W22qaZ3Ca3atJ5iq3Wy6gf/FX5WvK0+pTk7H30y7MLLZGUfg7//8I9HdoLdA2mKl+S2gsSE6 jWZvvArPnwnheBa2AQu6jdlMJqMUmkon8zHCqUtVjs3xFtkvNR6ObHaGO+q61NhA8IT7ZpBA wal+WvoRUU0wAFeSn2vDItv9SOBNWNxA8DIvzWJPKmelZ6mtTnoj6UabEJUW3DJqK41r1EcX /ufmVfyd2s3mMCoL1SzwqchmV5mt8IaLPEwN/tVaHG4j5MsngxzJZ9bwPY1kSyrvNGRQHFeU DKNOLJUaVPQSvfDvRLrw345/GoWfRMnzaNe8EjsSn6avbs4g7z8eQRsc1TaLqfkPuxGdQMhv pW9d43c1gulUtoUzaKcxap5CO1flGEXrdj1pZXrw156eRhpClKxCfqpKbEf8BNYWqBuRsyHw PDXu1Nf6h60mb4+C4po+VuN3NYLxVN4dGST6uyOoj2G6wuspGpgAagSmj8qR1iMoILfe3pP1 sh4VACiHU/4objuFH0FCC3Qsf4nqylVNPZL4p8iJ7PBfRLdD4Rd4to7KgiIs/HoWJoAxIc3F yDOGytfCCJXrToVFFq3lSnQTL4E1HUW2Oyylxq44UJ/AWoPsUEfLGkd0Dj+/v2PE5/U4EafF 1ikEuQ7isob85hG39fNf5DeSRoDLkGlbE/Xauj9F5WNBB+oUZEOHzRqf18cQj4jvsVReUE5w ohEuTr3/cjimVtQk8dfAnZCjONCPils6a34R8ON6vrBegbUcr3o3BdXyCZsgAisO4QJbUXlz IIjKbzSeQSrvWCVQDF/U2otTXrkczg0vLgLrdLypcj9BvsBIKaxIupbwtax3UTltYTj3nqj5 LJWj3QdobNlkIxh9+FeovQHV44+SzVGycKU4rCuIhzUxE2+J8leoPp+4iEZsfw6ipo2OVB+D qiuEedBepbJTNIXqZkdJF8qbqnRcNiDhb4RLmrxroxxzqK+EdiPoR+WOK/Ec0e9mJlFdLMeM HgEuJkbWw0S8NaM3AAeH+PvT0IKrdId8ECUhR8V0vOV5So0nIpud8VUqR5GvB94Z1eRyOIpB ubEReHtks8uzP94Kxc+g9LlY8W681RLuprkVPd30AH+g8slch1IbouJE/LPtvx/Z7Ixj8K/d 9v+JztyajvJhK83vJaIPPO5CpajdZmqUOZhlSaE6N85E06hYWFiciX+e1W8IT4i6GQfcWWFu zt3x+AjmZojNUeeWSudoDTINo+Aj+DcEdteZiooP4L0x3048fGol2QedVGeyL+BflrZR7IB/ +dd1BGtk0Wg+iH+d8PnEuzRIu9ODsjf8bnq/IPyaalOQu6DS3DKoJlyUTMFbAmct0fuOfbkM 74H8Rki/m0A5jpWEwgjSdKaENCcIVsdoBFWTiEsxxE7lHfhrMesIt9BiCjUv9ls/rxBNDKSb r+Cd0xVEr/H5shnerddVhFOwH+QU9dNkhpHzMgzTcCyqF+bXhGIt0VWyNPKMQRU1/ITDC4Qn HN6BrqFK88migMwob3hzUL6uM6c3CdYvMRZ8Cq8D/lbCUaPHodrXfgtuI/J5NdO27kbdg4O0 r7+W+GXYdyqn4H/OssBtwKZNnsseyJHut36WAbs3eS6V6EF1893m6dkVPxEzRuN1MmcILwL+ OLxbqpW0mk/THE1rDFLjh/DXrpYRrBuxEQ6TUe20II1Ub6F5ZZUOJB9T5TePy4jW9Crsp3Af LZjEvxfebeIlNL/xJASr7OmMDahFdiNjRKah8hlBNKss8F3MdxU3jkJrI8j5ewA5lhslMLpR GMCrBOvr+SKwTYN+uxZmoLk68xkE9o1wPjWTAM4nL3mzyPQJw3c0CxU6C3LC06jk8xHUZ7b2 IR/a47nfDfLbj+AfuWyETxJpLUF6O2aRlvxl6tsRd9qz/Rxd9EHWz3rUciwq7SqFmr+4m6Je GOF86mYC3gj4NOHl9J1AdU1cVyPN7ACqy8yfiKKL/0TwheaYgofU/ucZTWZT4F6Cn880ugGd icJTgvpHe1BIzjeRvypog9M4ONqPwxtz9TQxjGivlkPw7ty9TDgqbAqlW/htUxcugmHgUeB7 wHvQ7scMtAg3zz3eDantP0ZpBxmCL+wRJEg/SgvfiTqEXfAPJi21ht4EfoeE1wFovW+JdtC3 QgLqCOBLKNhzgOrWTxb4G+HFOJZiBt6O5huId8eewKRQCRr3CbmecKJf+wiu2pdaFBuQc/51 ZGIuRItxHfJRVbPInLEROI9oIu6N6jkc+V9rOdfDyGxbgQTfi8jfsxrdxGtdl48QbQpOCglk 95x+Rowj2qtlEsXlO84K6bdHoy4/QZzgzR4D6K5qTvbW4lD8E9fDGFmUoxvG5lUlzsQ7r2cI Nxg7FA7B61NajnYSw6AXhRk4lSWjWGgrUbvxnib/rUZzOAB1PYpq/aSR+Rh1b8TdUF12Z27r aRNTsJAE0i7cTsVHaUBRr4AkUUrFfMJfbI8j08JobbZACfRha+tr0Y67X7OVZjMaeIj8vDJI EWhbX2wfxVULLia8KO8EsDMqE1Kto7MWQbUGlYWdGcLfZoTDOODjyCfV7PWTQR2SjyN6/1AS uAjvHO8l+iqsTWcWcmI7f/QGFEsSJkm0CG4jWFR8tWMdSlU4BEu5aVf6gR8Ci2m84MqghPlz iL7KqcP78QbTLiW6Ujuhcwre+I1VwK4RzGMsMhP/jBpUVhueUHg3XIJ2T46gBVMTjKrpQjfg C1EajROHV+0acj4zgEyuTyPzMy43u9l4SzelUYOJjiGBSk+4T9pjND+ZtBI7oHzHP6LFt4LK 287D6C7zDKrIcBravWlbe96oyDiktf8AleN+jcqVQxyXwUuoyN15qCJub9gT92E6xRUsriSi dR7lxTURRYcfmJvHCHAd8F4kDKKiBzk3+1Gg6HSklk8gv8hWImH1Klpwa4l2zkZ8SCGhsyVK jN4EbfmPQz7cARSHtQwJtVeQi8RJlI8TXehm/B7y1+j9wLHoht5xbIO3dlYG+CKmpRhG1CSA z+Hd1X8TWSIdzTFIQ3EOynqkZRmGER3vRJtHznU5QLiVVmNLAu2GuG3kFbRoiQrDaAP2Qiar +5r8Emb5/JsUxaWEF6EdGMMwwmN7FFztXItZtPNt6WQFTMLbz2wEBc1NjXJShtFBTAb+ifca vIs2zBNsFJugfC331u9NRJ+SYBjtzlhURcVt5TyLtZ7zZS6KHnYLrSswldQwmkUX8CO8wmoJ aoJhBOAgvK2NMqiulVU6MIzG0o3yed1B0mtQEKtRBSfhjRROozKytlNhGI0hgZqfuoXVBlQN 16iBM/CW8kijMhtxybEyjFYliUIV3MJqCPUUNWokCZyLty77EGrSaJqWYdRGAhWTdF9Xw6jz T9RlbFqeBGom4b4TbEQZ7Sa0DKM6EujacZeKSaMu5Wa5NIhu4DsU29pnYwfZMIKSRJpVobD6 Abah1XC6gEvxbr0OIZ+WaVqGURmnRLnbDMyiirjWwalJ9CGh5da00sAF2B3CMMrRTfFuYBoJ q74I59URdFFsHqaRILPgUsPw0kVxnJVjBppmFRLdFHd1zqA7RjVt5g2jnRmLItjdwmoYOdjN IgmZBAp5cMdpZYEbsYRpw5hMcW7gEApdsI2qiEii4FL3rkcWFfLfKcJ5GUaUbI+qLriF1QYU FGpxVjHgZFQn210WYyFWBNDoPPaiuFnwGizdJnYchIr6F1YuPR4LezDanwQqa7yM4qoLlsgc U3bFW0/LqRF/LraDaLQvXahhhLsGu1PPykrExJxNUOVS910mA1xLtH0PDaMZTAd+g7e7TRZV CrXiey3CJOBqihtXPoYKBBpGOzAbNTkt7DT9O6ysccuRAj6Pt4XYCGqCehK2tWu0Lkng/Xjb xzutuL6EuT9algTqUruE4i3e76DAOsNoJUYDF1EcyvMm6htoG0xtwDbAnXjvRiPAI5hT0mgd dkMxhoXr+F6sI3PbMQn4KUpNcJ/sZag+kAXUGXElBZwJLMW7dtPAlSiq3WhDEiiA7g2K71LX Af3RTc0wSjIDOdEL1+tS4HTMBOwIdkHbvu6t4BHgJRR8Z05LI2pSwHGoA7p7jWaQCTgnspkZ kdCHEkEHKFazf49pW0Z0zAD+l2L3xXrga8jxbnQgCeBQ4Em8u4hZlOZzBjAqstkZnUYPcCrw KsXr8RngCMwENJDT8id4+yA66vctaHfGMJrJHOAmit0UG4CfYYGgRgEplCT6JMWLZiWqHW91 toxGMwWVL15B8c3yaaRV2Q62UZZJwDco9m2NAM+jUjZWWtaoly7gAyhBuXCdDQIXYuEKRkAS wN6U3klMA3cAB2LpPUb1JIH9UYJ+oVM9A9yH6riZr8qomtHAWZSO2xpEvgXbTTSCMhP5StdT vJ7eRH02x0Q1OaN92By4HFVuLKwAsRp1Jdk2stkZcacf5f+tpriywlrgCmDLyGZntCUJpKr/ nWIz0blDfhOruWXkmY42a96keL1kkVm4P2b+GU0kBbyX4tgtZxGuAM4Dto5qgkbkbIHKvKyg 9Bp5BpWHsd0/IzQmAp8EXqH47jmCAk8vwgRXJ7EV0rJfpfSaeAX4DLb7Z0TIaOCzqFNJqbvp BuCXwD5YjmI7kkI7yleijZhSa2ABcA5Wf82IEdOALwCvU7xonWqQNwDzMFOgHUgBbwP+TOmY vSzaXf4y8mUZRiyZiO6mT1NacGVRZ5/PYjuLrUg/MuueoPz5fRbdvCZGNEfDqJqJwInAgxQH CDoLexlwDXAkSnw14kkP0qauRnWoSgmqYeBhlAkxKZppGkb9JJEZeB2lAwad8SwyH+Zivq44 kEJ1076ItOVy5209MguPwkx9o43oQlUfvgcspnQslxNI+CCKet4ey1sMk250zM8G7keBwqW0 qQxqbHIJ8BbsBmO0OeNR4utfKS5p4x5DwN2oq+9s7A7eDFLALJSCdQc65uXOxwbgZtQmbnwU kzWMKOlCgugCVAq33MWSRZrXY6g92eEolseSr6sniXxMhwLfAh6lvCbl+KZezr13LqbxGgag pNd5KKF6EeXv8u4t8z+iqqizMad9JbqRP+p04FrKh54UBnn+HPmmxoU/ZaMUlsMUTyag8jXv QkJsE8qbg47jdxnwAPK93I0CWVchf0snkUI7tP3AAcBbc2MqCvItt+YzKOfv78Bv0TFcjY6v ERNMYMWfKejCmwccDOyEvy9rBGlgT6LGm48BzwEvItOynRgLbAfsiEy2vZDGuSn+6zuLjssd yJ94N2r/bsQUE1itRS+qqTQPxW7tjiLsgwiwjcjBvwgFPT6OBNoC5MMZQJpatvHTrosk6nA0 Fjm6Z6L653Nz//bnXh+F/3rOoDiqR5GAuhkdj8HGT9toBiawWpvpaFt9f5SruAfVNytIo6oC b6KLeRHqz7gAaWkrkGm5nHw9p0aSRCbwZGTKTUYmcD8STjPR3zk991q1IQQrkJb5AHAP8Aj6 u4wWxARW++BoIjsAB6HaXY4GNoHqz7Xj3M/k/s0i4bYS+cuWox20YbTdnyEfGDuQ+44xud/t Q4KmFznAu5FgnYp27Lpy808ibTFZ43zXIKH7L+TLuxMF5DpJyUaLYwKrvRmNajP1I/NpDvLv 7ETrl+Jdj4TRk8jEfQJYiEq7rI9wXkYTMYHVeSRRCMR2KGBypmtsgTSe8bkRVZxXFmlLa5BG txiZqs54FngBxa2Z5tRBmMAy3KSQwJpI3mSb5nrsHo4/qSc3upDplyCvvTllVwaROTmUG47f zDEtl7oeL8s9X458ZyvpvNAMowz/BzLwT/Esky00AAAAAElFTkSuQmCC iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAYAAAB5fY51AAAACXBIWXMAABcRAAAXEQHKJvM/ AAAgAElEQVR4nO2dd7wcZbnHv7t7zklvJyGhBJIQWqRFOkY6Ui6I14aFq1wLFhAU9KoXVFRE Bdv1CnZEFBAVvFgAARXpiCAthA4hAQLpvZyc3b1//HbYmW0zs2d2Znb3+X4+7+fsnt2dfXfK M8/71AyGUSYDjAMmlMZEYFKNMbH0vlFADhgJZIHRpW2MLm1vLVAs/S0A64F86e8qYGnFWAYs Kf1dURqrStswDDJJT8CInSzQA0wDZgEzSo9nANsC/cBYJJB6EprjIBJUq4HlwELgOeD50t8n Sn8HkSA0ugQTWJ3NMGBrYDqwK7Bn6e9rkEBqZ1YBjwGPAg8Bc5FAexHYlOC8jBZiAqtzyCIB NRM4CDgQ2AeYAowvvR6GYmnkkRZTKD1eQ3nJtgHYXPo7SHnJt7a0jdGUl4zO357S3/FoeTmm 9Fq2NHLovAx7bhaAlcBi4D7gbuB24BlgI6aJdQQmsNqbicDuwBxgf2BfJKDCHFfnQl9SGvOB BehCfwUtyRx70kqi1176KNvMJqAl6RRge7RUnQZsURoTCC94X0EC7B/AncDDyF5mtCEmsNqL YcBU4A3AUcB+6OL2szUVgQGkabwAPOIazyBhtK408q2Y+BDIIeP+KKSVzQR2A/ZAwnpbYDgS fH7n8yDSwP4J3AjcjOxjtoRsE0xgpZ+xwOuAY4BD0MUaREAtQ/adfwEPIEP1U0g4dRLjgR2B XZCNbi+0jyYRTIA9CtyKBNhdSIs0UooJrHQyBi3xTkSCaisaC6kNaOl2P7ro7kDCaTm6KLuJ HrR03BHZ8g5Atrx+ZDurxyDwMnADcA2yga1u6UwNo40ZARwGXIyWaUWfsRT4E/Bx4LVoWWTU ZhjSvs4A/oBsdX779xngh8Dh6NgYRtfTA+wMfAldIAPUvngKyL40D/ge8G9oyZOLf8ptTxY5 K44BvouWhE5ga619P4Bivs5DcWtJxaYZRmKMQsu9PyBBVO8uPwjcA5wNzAZ6k5hsh9OLtK+z 0TJwkPrHYz1wHfBOytH8htGR5JAx+AIU4FjvwliHDOWfK72/L4nJdil9yHj/WXQM1lFb8xpE 3sVvIG+labpGx5ABDgV+Szm3rtZ4GvgKpkmlhV50LL4MPEn947YOGekPx5xYRhszFngHClbc TG271Argd8AJmNE8zQwDjgOuRp7XWlrXZrR8fxftn/ZkdBFjgDNRRHWtE7uA7thnI4O73ZXb ix2BzwCPU//4zgU+ic4Fw0gl/egkfZHaJ/IGFFl9PLbk6wR6gGOBPyNjfC3B9RKyh01MaI6G UcUw4GMokrxSUBWQW/wqFMRogqrz6EGZCFdQTrKupVGficVzGQkyFvgwitGpZYx9GfgfYIek JmjEzgzgW0izqnVOPAechtKJDCMWssCbUX5enuq76Srga+jkNbqT7ZDHdxW1Na6Hgbdh4RBG i9kHuJ5qQeWkynwLVVMwDFDxxAvQuVF5vuSBm1DOqGFEymSUxrGS6rvlGuAiYKfEZmeknR2A 76BzpVLjWo3yR7dKbHZGxzAC2RxepPoOuRH4BXJzG0YQdgB+hs6dyvNpEUpkb1RRwjDqshfw N6pTaAZRCZfDMRuEEZ4cqmt2B9XnVh64DVWOtfg8IxBjgXOpnUbzLHAKlt9nDJ1e4H2oblmt dJ/zsIh5owFZ4GDgQaqN6quQ8XRyYrMzOpUtgPOpto/mkTfxUEyTNyoYj+pMVUYsF4C/IxXd MFrJa4G/Un2z3AD8AFVRNQwOQlqV23tTQIGfn8CSko34GIacPIuoPh8fQdqW2ba6lOEoz2sN 1Ub1a7EwBSM5ZqKSNZVG+XXA57EUn65jZ+QBrFS/X0TVJC3nz0iaXhQNv4DansRZyU3NiJOT qZ3rdR0WU2Wkj+1RKe1auaofwJaIHcs4FFFcWUxvOfBprLmAkV5ywFmo12Rl0cAfY8nUHcc0 5IGpTIt4BMvlMtqHfZGDqFLbuhVpYkabkwGOprqo3iYUxjA2uakZRlOMBr6NzmG3F3ERKuNs S8Q2JYvU6NVUB4F+EAvGM9qXLPCfVAebrkHlm+3cbjPGAT+ndq3tvZOblmFEyp7U7h1wBRZo 2jZsgeoMuUMW8sjTsnWC8zKMVrAl6rzkPt8LwC3AlATnZQRgN+AhvHeb9cAXsdgqo3PpRY13 K1PLHkWNXo0UciDqxus+YCuAk9Ca3zA6mQzqg7mc6mDogxOcl1GDk5Bwch+oBShP0DC6iQOB +XivhZXAexOck1Eii+pTbcC7fn8Q2DXBeRlGkswC7sdrjN8AnIqtNhIjA3yK6nKzN2N1qwxj EnAD1fGHZ2OxWrHTA5yDN3guj0IZrEqjYYixKHXH7UEcwJxQsZJDff/cOYF54IdY6WLDqKQH 5dC6S9UMAt/E8mdbzjDULsm98/PAhaXXDMOopg/d5CuF1kVYba2WkUPCyq3ebkYHwlIRDKMx GdTYYgCvg+oiTNOKnB6q7xADqGKoCSvDCEYWOarctl9neWg2rYjIIAO722Y1gHk7DKMZMqhX gdu7PogM8XY9DZFad4TNSLOynWsYzeGEBLmXh44SYHFaQ+AUvHeCPGazMowoyCKbltvMsgkF lxpNcBLeCHbHG2jCyjCiIQN8Fa/Q2oj6HhghOBBvbqATZ2WhC4YRLX3IU+j2vq/CEqYDsxvV VRd+jgWFGkar6EER8e40npdQgUCjAVvgrWdVQLmBlm5jGK1lDHA9XqH1KFYEsC7jUKVQt2b1 IJbIbBhxMQm4D+81eAtWbrmKLFr2udfRC7ASMYYRN7sAz+Fd5VyJObteJYO621RWCrXie4aR DAdSXbnUYh9LHI23Fdd6FNJgGEZynIi3Rvwa4PhEZ5QCpqGa0+7whS9i0baGkTQZFPnuNtMs oos7TI/D2z6+gFpxWRKmYaSDHuAavNfobXSpEf5ivC7UuVjfQMNIG1tS3TrvJ3SZPetkvNUX VmEdmQ0jreyBN/NkM/DBRGcUIzujKFp3wmXX/HjDaFPei7cQwSt0QdjRcOBveNXL72ExHoaR drKo0J/72r2dDi+x/Fm8XodHUGcPwzDSz2jgAbxe/S/Qofasg1Ash/NjlwP7JzojwzDCsjew lPJ1vA44LNEZtYDxKC/QrU5+OtEZGYbRLJ/Aey3PBfoTnVGEZJGdyh3CcB3WqcMw2pUccC3e fMMf0SG26IPxhvi/COyY6IwMwxgqM4DnKV/XG4DDE51RBIzFuxQcBN6Z6IwMw4iKt+AtrzyX No+CP5eyV7CA1EhLvTGMzqAHuJqyuScPnE+beg33AtZSlr4vAzslOiPDMKJmBt5A8HXAfonO qAlG4A0QLSDPgmEYncepeOMrbwdGJjqjkJyGd237dxTlbhhG5zEM9V5wB5SeleiMQjAZb42r VcC+ic7IMIxWMxtvgvQrtEn1le/iDSq7INnpGIYRE+fhvfZ/QMQG+Kit+fsAf6Hclus54ABg cYPP9KL2XltilUaNMnkUv7cMVQnYUPqfkV4mAXdRjrNcg0qg3x3VF0QpsLLAn4BjS8/zwEdR sa96TAW+hH7UqAjnYrQ/ji1kE/JC3Q3cgW6IK0uvG+njZOASylHvf0XXd+puNm/G6ym4i8bd mqcgY7w7ZceGjUZjAGnt5wLTadN4nw6nF7iV8jHLA+9IdEY1GIu37MRG/MP0K12hNmwEHXng KVT4cRhG2jgILeGd4zUXFUBIDR/GG9H+C/wTIa8j+RPfRnuPAeAKZP800kMW+Cne5hVnJDoj F8PwdopdQ7Dk5rtI5iS30VmjgGKAtsVIEzNQSJNznBYSQTBpFF65U5A9weEypK4bRhxkgCNQ O/UpCc/FKPMcMr47TAU+ktBcXqUfeIKyFF1K8HxB07BsRDkKwM/p8BrjbcZMFNLkHKNnUAhT 0wxVw3of5eVfEWlXTw5xm4bRDBngXcD7k56I8SrPIC2rWHo+gwQ7ZI2hOgVnaojPm4ZloxVj IW2SEtIlbIn6NzjH52WG4DEciob1QWAr1/PvAy8MYXuGEQVTUfK9xWilg5dRiXSHySiqIFbG Ag/jlZozQm7DNCwbrRpPYlpWmtgOb82seTSpZTWrYR0L7FZ6XASuQl4Bw0gD2wGHJj0J41UW AL9EsgJgF+CNcX15BriTsrQcAHZoYjumYdlo1SigHFZbFqaH7fC2uv8nTShMzWhYh+Atgfo7 4OkmtmMYrSKDmvRaiEN6WAD82vV8NnBk2I2EFVg5ZNB0egpuBC4O+6WGEQMzsSq3aeP7qGQQ SIacSsj+pGEF1izK5WNA5T7uCbkNw4iDkcg5ZKSH+1GFFoejKNvCAxFWYL2Hct2qIqouujnk NgwjLkxgpYtByhWJQUv2k8NsIIzAGoW3CerTwI1hvswwYsZ6YKaPvwGPuZ6fSIgbSxiBdRyw TelxEeVtmXZlGEYYBoGfUdaytiREiENQgdUD/AflGlergGuCfolhGIaLa1G6DkgGvYeAxveg AmsmKuHhcAuW5GwYRnM8g2rzOxyCgkl9CSqw3o23+NbPKat0hmEYYbnU9Xg4kjG+BBFYI9By 0OEZ4Kbg8zIMw6jiFlRLz+HdBOicFURgHYC3/OxVKGDUMAyjWQZQlViHrYE5fh8KIrDeRtk9 vB64OvTUDMMwqrkWWFt63ItCHBriJ7DGAMe4nj8BPNrU1AzDMLzMAx53PT+Sctf4mvgJrP2B 7V3Pf4fFXhmGEQ2DeBOip6GehnXxE1huFS2PVDjDMIyo+D1eJeitjd7cSGCNxbscvA+LvTIM I1rmA/e6nh8FTKz35kYC63WUa7YXgT8gy75hGEZUbEayxYnrnAK8vt6bGwmsYyiHy28Aro9i doZhGBVcD6wrPc4hLasm9QTWMBQu7/A85h00DKM1PAY863p+CHWKL9YTWFPxFtb6K+YdNAyj NeSBm13PdwGm13pjPYH1BrzZ0zdEMi3DMIza3EDZjpVDMqiKegLLvYZchteKbxiGETUPAEtc z4+p9aZaAmsi3q449wAropuXYRhGFStR6z+HvVCXaA+1BNbuyLXocDNaYxqGYbSKApI1zrJw C9QKzEOtKn9z8IYz3NaK2RlGysih3NlQbadSzgCwhvapXXcbKrAwCh2P11NRyqry4GRR/qDD crwF4w2j08gAewAfR57xEXRGx+gisBrZhr6D6tilnSeBpZTrYu2PZFKh3gdGAIsot5P+fQsn Z63qbbR67I0/R6JzvpCC+bZiFFCHqyD7Ig38hvLc3cILqLZhzcRrv7oLw+hcRgNfQ51bOkGr qkUGVVz5Nvq9acfdmHkisJP7xUqBdRDlA1dEnZ0No1OZjbqZdzoZdG2fSfjmyXFzB5I9Dge7 X6yc/IGux8uAp1o0KcNIA1PonmarGeAMvDbqNPIM8IrruVsmeQTWMGAf1/NHKfcOM4xOJO3a RtRMAr5BiE7LCbASmOt6vheyrQPeA7Y1XvvVv1BFQMMwOocDgNNJr7DOo9p7Dlug3GbAO+np wPjS4yJyhxqG0VnkgLNQvbu08hBlO9Y4YIbzgjsOa1fKAmwAb88wwzCao4gqndwLPEiDmKII 6EM2qj2QYKpHP/AV4AQUq5U2ngQ2oRIzGZR9cxN4BdaerscbMYO7YUTFpcAniKef51jU7+84 n/e9HgXLnk9rhWgzPIWybJyaWLs7L2Rdf3d1feAFLOHZMKJgAAVDxtV8eDXwWWAh3vCASrJI YB3Y4D1JsQbVenfYjZKscgRWD/Aa1xseiWVahtH5FFB+XJzMRZpTI6dZBgVmfhWfXoAJ4ZZB u6Dl7qsCaxreSZvAMozoSCKK/pd4i+LV43UoPquRzSsJHnY9HgXsAGWBVRntawLLMNqb9cA5 yLzTiB5kX0tbQOnciuezoCywZrheKNAemd2GYTRmLnAe/v0Y+knf0vBZvEva6eBdEjqsxAzu htEpXA7cGOB9c0hXQOlqvJk206G2hrWEco8wwzDamw3AZ4AFPu/LoeToA1o+o2CsAxa7nk8H CawMsK3rBRNYhtFZzENLvkalzjNoaXg+6cg1XI+3KcU2QC6L1q39rhfmYzXcDaPTuAz4E/5e w7SUoSngjcWaAEzIlh64Jaqf6mgYRvuxEfg8/l7DHApz2LflM/LnedfjscB4R2A53oEi5iE0 jE7lEYJ7DS+kXAwhKZ6lrBGOBSZmUbSrk1NYxFs8yzCMzuIK5DUMElB6OsmWjn6Fcp5jFpiU RUW9HPJY0T7D6GTWI6/hQp/39aAyNEl6DZfjtadvUSmwClgMlmF0Oo7X0K9A53jkNUxqabgS byWJiSawDKM7+SXBvIYHo9SdJJaGy/AKrJpLwpWxTskwjCRYj7yGfktDx2u4X8tnVM0qvFpg lcBagyr9GYbR+cxFS0M/r+EE4Oulv3FSueKb5HgJHZbFOx/DMBLmcuB6ggWUnkH8S8OlrseT nEh3B7NfGUZ3sQ44m2ABpR8n/qWhO2qhP4u3d/2GmCdjGEbyzEPeQL+l4XjiXxoOuB73ZPFW GvSbsGEYnUmQpWEGeQ1Pj2VGwi2T+rLASNc/TMMyjO4k6NLQaV4RV19Dd/OOvizerGzr9GwY 3cs8tOQL4jX8CvEElLoj3XuywGjXP+Lu7mEYRrq4DPgj/kvDQ5Cm1WqvoVsmjXAK+DlYHSzD 6G7WoYDSl3zelwU+RuubV7gFZ6ZSw1rb4i83DCP9zAMuCfC+iagMTb/fG4eAu/rxqKSrChpG p5PDqxS0C37Gd9DqbA5wKjEFlGbxalXtuGMNI830Au/Hm1GSdqaiOQchi5Kj57RoLu440XU9 eNeIaev+ahjtTgZ4G/AaVM3XLwUmaXqBnYEdQ3ymH1UyfTPRF09wa27FHqRhOTXdR1a/3zCM IdID7FEanYjjNTwdhTtEKZRHuB5vyOKtN2MalmEYzZABTgNmR7zdHtfjwSzeOAfTsAzDaJZJ wNsj3uZw1+OBLBWRpBF/mWEY3UMWmBnxNntdjwdMwzIMIyoyRK/0uAXWYBaVIXVIug+ZYRiG G3c4yPIsFRX9Yp6MYRhGI9wyaWmlwBoD9MU7H8MwjJo4nekdllUKrBzxF5o3DMOoxTi8NrEl lQKrUqIZhmEkRT/een1Ls3g75ZjAMgwjLYzHK7CWZYElrn/YktAwjLTQjzf7ZmkWtdFxgkcz wJZxz8owDKMGUyhrWAVKNqzllGOxMsD2CUzMMAyjkhmUqzWsprQkXFl64jAt7lkZhmHUYLrr 8WpgpRPp7u6uOg2r2mAYRrJk8QqsFcAKp7zMQtcLW+Ct8mcYhhE3I4DJrucvAnnHoDXf9YIJ LMMwkmY0XoE1H8oW+OddL0zAkqANw0iWsXi78cyHssB61vVCK2raGIZhhGE63rSc+VAWWI9X vHm31s/HMAyjLrtXPH8cygLrObx1sTq1WL5hGO2BWwatB56CssAaBB5zvaFSuhmGYcSJWwY9 DgyAN+z9UdcbtsUM74ZhJMNoFOXuMJdSdy+3Uesh1+PhqJHiP4f4xRkk+LbHGypRQMUCDcMw KtkBbz/CR5wHboHlSLEsqjq6C0MTWDng3cBZSGNzF5MvYrFehmHUZmdgWOlxkToC63mUV9iP NKM9gV8O4Uv/E7io9MWZxm81DMN4lT3wJj0/57zgLo71IrDY9Xwvmm/ZswXwCbS0NGFlGEZQ csC+rudLgBecJ26BtAm4Dy0FQbFYE/AW+AvKDnRW8GkReVIHUe2wIiUjIBLIWbSjc2ifZmts w4ifkTR2Ho1o8FqUFNF545w/BcrnUBbvOdRT+tutN/rxeONA/4Wrd2qlBnU38B+lx5OQ4b0Z gTUcb4vpdqQALEC2vXkoG+AFYBHagY7gyqELYzKwHap2sSvwGiS4TXglxxXoRlyP0Xhtq1Gy CXiiNOajc2cBWsWsLb2eR+dHD2q4sA2y9+6IzqFdKZtouoUZeIuI3uN+sVJg3e56nAEOAu5q 4kvbcQfn0Xr5LuAO4DpUxWItujOGIYecCtsARwGHAnOQxhp1Z1yjPtvG8B1FFCO0HHgAuB/4 K/AksAbd3Ap1P12f4UigzgaOBg4DZiGtsB2vr6C8Hu/vu63Rm0cCL6ODUAT+r8kvPZyy2pv2 kUca1DnI2NeKZcIwtNT+L+BhvMsCG+03CqVj+BLwC+BEpFmPpHX0A0cAP0ONY9J6/lwzxN95 lWtby/CJJsgCf3J9YCFl92IY2kFgDVBeAsfZeGMc8FZ0F95I+veTjfIoIC38BuAkZAaIe8nv FLb7ClpqOqaJtIyhCKze0m9ytnUjAfbv510fWIfCG8KSZoGVR3lJH8JbviJuxiJhOZf0nXQ2 vKOAcm1/jpb2aYghzCAb6fdQNc60XG9DEVi7IhOMs63zgnzocGCz60NnNPHFaRRYhdLO+F9g ahO/qVVMBs5HF0Ta9pkN3bR/jcwFabQ/ZoEDgb/jvW6TGkMRWB+hfA0MAscE+dAkFJPlTOAP hFd70yawCkirehOt8woNhRzwBpQeVSBd+65bRwEl3b6J9vB4jwe+jAz9SZ4/zQqsbOmzznYW oTZfgbjW9cElwMSQX54mgZUH/oxcxWlna3TQ0nCn7NZRQJ69X+BtgtAO5JCAfYbkrr9mBdYE vA6/G2q9qZ6KeyP64SCNa1900bcbm9GJ92m8nYHCkEV32DEozmoqcjePRHaE9WipuQgZDFdR NqaH5SXgfcDnUKZAGrXBduIqwscRrkDLq7toHMMVhj50Dm2NzqGJ6PwZhs6VDcBSFKe1qPS/ gSa+Jw/8vrSdS/GmuKSd2XhruIeSNzvgvct/N+SXp0HDGgAuoDkDaRYZ5N9c2sbdaJm8knLA n/M9+dL/ViGBcz/wbeCdSNg340XqA85GwjBpjaOdx+ywOz5ChgF7oxvP75DWswTZxAbxRrsP lv6/pPS+3wAfR/Nv9qY1E7iT+K/DZjWsC13byKOYs8AMAx50beBRwu24JAVWAQmQbxDe9tAH 7Ad8ByVcbhzCPAaQxnVRaZthw0N6kdAaGMIcun3sHXKfD5UMyqP9MAp4XE3z10Ee3QRvRIUE JhBeW5qBbrZxXovNCKwcXnkzjybiIb/r2sBawoU3JCmw8sCPCKdZZdDd7Gdo6Rjl3AulbV6O vDlhNK4+4OuYTavZEafAGguciS62qI/XAMqpOw2ZI8KwQ2lOcV2PzQisWUi4O9v4QRPb4N8o 7/gCutsHJSmBVUB3pDDVUqcA59L6WJYCWlJ+k3BhFaORsEt6id2OIw6B1Qsci2rHDbb49wwC tyKPcpju7AeiIPA4zqFmBNZZeMMZ3tT47bUZjxI2nYncje74QUhKYD2G7ihBmY2SK1t9orlH Htm5XkdwFX8rdIeNe3+2+2i1wBqNNOCVMf+uFSjAO2gqUAYV09wUw9zCCqxeJISdz79E+KiE V/mxa0ODlEvP+JGEwFqPtMIg5ID3IDdqUprLMhQoF9Q2eBAyyiYx13YdrRRY2yNPVpw3O/cY BP5IcG09B1xM67MqwgqsHfHaaX8R8vMejq6YzGcDfi5ugZVHKQpB1OQc8FGSjyx3Iu8/Q7AI 6iwKd7ClYfDRKoG1M1pxJJ1SlUchGO6GDY3YElWUaOWcwgqsT1V8/viQn/cwFtWBcjZ2P8E0 grgF1lxUysWPLDKMNhsu4Lifl6O4maWlx04Jmma2uRH4EsGE1gTgH5jQCjpaIbB2QR6tZo5B AR3vVUjDXlL6647da2ab9xM8yPV4hub99hthBFYOmWSczy7Ex/7sd5GsBm5CblrQwdoVHbA0 cSGKk2pEBsVVnUu4cIcishncgnbuE2jHrim9Nhqp5TsCByBhHSb+qg/dZV4ALqFxwOkK4GvA r0L+BiMaJiEzSZiAzCK6mT2MKnTMRbFWy5HgGIFi/maWtntY6W/QqqMZ4LWleZ2Ef6DszcD1 wL+H+A2tYhdU6NLhJrwNnZviCMprzALKV/IjLg2rgFTzIK7e/fGG/vuNjSja+YPICBhEAGWR VvoedHJuCPF9K9AS3I/hKL/TtCz/EaWGNQq4kuD7vYBubP+DmoIGdVj1IQH0AxT1Hub7fhbw e/ZHArMV+zyMhnWO6/dtJmCysx8jUBClM6En8Q+CjEtgbUR3FT/6UTXVMCfaKQyt/IxTPuYJ gu+LeQRL+DyWeDw+7T6iFFinEfwGtBF1nNqFcOEHbnrRaubXBA8e3oDOWz/NqQdvobwoR1CB 1YfOd+dzC4iwV+l5FZM6zuf9cQmse/EXKjlU7CyIgXQQpVEENWIGYUvKtcWD/KaL8bcTjkSq fdICIe0jKoG1M7I1+X2fc7N7O9GVoukF3ovc/UGuqReAnQJsdw7hVgBBR1CBdWTF5y4M+LlA zMJrqL7a5/0HE090dpBg1tkEWwoOIDvA2ADbDMsYZHsKIrRWoGW4H6dgEfB+w919pVmGI23J T1g45WjmRPCdlWRQX4CnfObgzOMS/DW70USfa1hAy+YgXOn63EZkt4uMHtSUwfmC5TQu17Ij 3pparRjL8deEelBch9+28igVqZU1ufuQ/S+I0LoJf5vZNnjLydrwjmVEU1H2CLxpI/XGUzRX nTcMe6Fj7idkVqK4PT8+SrRxZJuRXcqPGXhjCm+iBZVJ3kn5xxVQ/FA9ssAPaV2cyiBaOvmp 3fvgr8oXkDAOm6PVDKOAy/DfL+uQt6gRGSQAkwpcTPMYBL7F0OutZ9Fqwk9ALCOYVhwFx+Fv MC8gM4SflrUVKhoZ1X5/Di2f/TiT8j7NoyVv5IxG63Nnco/TWGBMRgbDdUS3Q5zialeirPhG ZFHVBb9tPkGwNX9UbIV/8F4B5Q/6eXzGAt9naFUBOmkU0Pl2GdFoV7Pwj1kaAD5JfM0ossB/ 43+8lxJsSbw/Oh+HUhVkEGmYQTJNcsAjrs8uIoQZJmwcxjdQzBClLzuOOpUBS4xAa+99icYD sAYZ2m9FBsNGTERBlo06UBdQjNkl6PfExVvQHbBeLFURGU8PQzE7jXBK4hxEc7j9YuwAABGT SURBVCVIOolV6JjfjgTNUMigmL0vUH+fFkvf9UZ004iLfpQWtA+N5/ZplGzvxxYopGYWwcMv HAbRMvV6yrnHjTgSLQGdeX+P5vpGBGIPvBrTn0lnYX5QxrefvehekumAMgIJer+71gcSmJsh xqMKDI2O0QaarCwQAW/HX/u7i3QFGOdQ/qMzv/Uo5qylX+guFL8eVR1IG1l0Z2l0MDehoNCk eBP+J9zlic3O2BN/++edtNZR04jxKGi60fxeQUGraWE/vArPH4lB4alsA3ZFq7+wCYYj7anR wXwe1ddOiokoTaPRHJ8lXXfIbuJDNA4bGURljJPkHBqfP3ngXYnNrppLKc8tssh2PzJ4ExY3 Em2gZRRsiwLtGh3MX5Fsk4cM8nQ2Mp6uwJtrZcRDBqXUNDp/lhFNnNdQ2BN/s0cQG1YcbIs3 UPV+msgCaMazUaRcPhlkpPtYE9tpJdvR2Dbl7LDN8Uyn7hz+ge6C9RhB+m4G3UAWf8/xSyid JEleAp72ec8s0uGIOZVySl8RNTRudO7XpFlX7PUoDwi0M95FssurSqbS2LZQIB0VJx6i8UHr I11dqruFHP6Va+cRXRuwZlmJYp8asRXJC6xtUEEAZx5PogT+0DQrsFZRXo+CdsqHmtxWKxhF Y3WziFyxSbMY2UIaEVlCqBGYDDDO5z0LaK53YJRsppx2Vo9hJG8HfT/lenVFFCe3opkNDSXY 7SdoZzmcjhpFpoE+Gt9ViqjoXtIMIk9rI0aT/B2y28ji7/1z0nWSxm8eThPXpJiMItsdltBk VxwYmsBajdahzs4aQ/JeE4cgF3gaTjbwn4cJq/jJ0D77Pcj5k+RvOZ1yFdEicjStbHZjQ00n +Allo18GBTqG6VrTKpw0g3pkSCZgtJIe/O/ka0mPcO0W8rSP5juGxvMYYOhR/80yA2WSOPOb j3KMm2aoAmsZXvVuIip0ljTraVxqOEM6nAT9+IdWpGHp2m0U8U+1mUqyYTGgG94UGgusTSQn sD6CN+f3R8humyiVFUnXkLyWdQiNS4IUaGH+UgjeSePgxE3ACYnNrnvpwb9A4r9I3iHSj3+1 hRtJRhOcjpxzzjwWEkFFlCgyzDdQToMBLbXOpvnSsFHwPEoBaMTeJDvHDMqUbzSHDaTDm9lt 5FEVj0ZsS/JOpq1oXJcO1Fw4bpOCU1HCEehF4NukaLUwHnUFcUe/H5LgfEbgX8LlaYK1BmsV 41Hwql/6UFK5at3OaTSuNTaIljxJciaNz58CLao15cMcvBWKHyOacj+R8ja8henuILk1fhaV rWh0MDeg9t1J8Qb8+yOGbUppRMe++BfK+wvJhQyMRk1U/dKH9op5Xj2oJZ5baCZ5ndUlh+rc uO9A70twPm/Hv+b535E2FjfD8Fa9qDXyqIStkQz9eFcNtcZ6VN8pCY7H/4Z3H/F7w0/Ce93d QrKml4bsj9fY/RT+lUFbxRS0pGp0QAeRYIubIymHK9QbL2GJz0mSRZ1cGiWnO+W14162j0F9 L/2qjp4b87wmokrEzvevoTVNOSLlYrw77fyE5pFDbtRGB7SI7qLTYpzXRFRYzc/28Dv8+z8a rWVv/EsHbyRYL8CoyCD7ml9fgJXEvxw8t2IOPyYdsWoN2QrVaXbvuJZWFWzAwXhdq/WWXo3K FUdJHypb4tc4YiNS+Y1kyRGs/+OLqDhdHMzBv3RSEfg98VYD3h2vzW8xbZS4/3G8d4C/koy2 0Is0Fb+DOwh8jvD1rMOQAz5BsOaVd5De0tPdxgn4N1IpII/v9i2ey05oyeW3FFwLHNXiubjp w1vyO0+590NbMBK4De8PSCoCfg7+3p4iMmCeR2s0rT7kgg7SQWgtFiyaJkajUih+tqwCqm+2 a4vmsScKVvU7f4rAb2ntzbeSU/AqKHeTjtS3UOyL9wJdROMONq0ihwoOBmmDtRmtu7eK8Pv7 UZK4n0fHGZdjtqu0sRcyIPsduwKKOTqc6Np+5VB3qqcJdg4vRt3O42Ia5W45RbSCODDG74+M DNJYHMlbQK78JGKztiF4w8gC6pt2PEMLeehDNavvJnhD2fkopcFIFxnU7svPAO9oWquQh3Eo kfBOvutFBOs8XSjN77+Ir0diDpUadzdF/TptYGivxzi8sSyDwFsTmssR+HdBcR/8dWgpcDTl 8hhBGIP6Cf4K3ZWDNjhdA5w4hN9ntJZx6HwIciydc30eSlHZluA2yV500/o8Sg8KerNzPMtx LsVOwBtzNY8URrSH5VC8huYFtN44WYssCsQMujRzToI8OhDfRxG7s5EavHVpTEP9Gt+Gln4P lD4TphPzAMq/NEN7upmGNPUwx7aAbKi/Rx2iD0WmkanI9LAtKhZwGGp8+kfkWQ/7HfcRbwWS aWhF4MxhI8reaHtyqASN+wD8gWSiX3vQMnWAcCeEc1JsQkbxxagF17Oo6upadMCaaRc/iNKI 4jSSGs2zH6pO0sz5sxndMFeg6gVPI/vPitL/B5vc7pPE238whwz77jn8lBRHtIdlArILuXf0 WQnNpRfZI4KEF7R6bAK+RTLpQUbz7EOw8IJWjwIyuezZ2p9bxccq5vEYCojuKA7F6zVchjyJ SdCDjJNhVe8oxxrgy5hHsF2ZjcIYkjp/8sih49eOLGpmo7rszjzW0yFLwUoyyJDoNiI+SARF vYYwnyOQfSrOk66AcizfSBt7UwxAebKXEM4uGsVYj+ylcRu4RyJbmVtofpkOPo9H4A0oLaLC XnG5YWuxPYq9WktrBZfjebyc9DS3NIbOcOBkZEcK6tFr9vzJoyXgu4jf5pkFLqiY0110Qb22 WZR7qRWRsfrkRGckjkaZ935VFJoZ61CZjTeSrHA2WsdWwNeQFzzqG18BGejPI7mwgXeja9WZ 0xLiNfQnygfwxm+sJH7DYS2GA8cCvwZeIXx4QuXd8GXkpj6e5Ja+RnzkgJ2RU+dRyp7jZjx/ jkb+EAp5mUZyXrjd8MYwpqHaaqxk0DLMfZAeArZMclIV7Iy6WV+F7FxLaVwQcBAd1CeBq5En ZSa29OtWxqAb1YXAPSiMYR31hVcBafcLgTtRxPiRJO+UmUx1DuOlJHReJ3kxjUfBdAeV5lEE rgXegQRDWuhFJ990lOIzGc19LFrerSqNJSim5vnSc0e4Gd1NDgmdrVFg55YoBGAcsumuQx7j pSjfdiEqH7OJxq3q4qAHlV56O+Vr9B4kiJcnOK/E2B5v7aw8cA6mlRhG0mRQ5L3bkbCY+MMo UsdxeDPh1yMtyzCM5HgLXgfUOuDfE51RSsgAn8G7Rl5Om5aoMIwOYF+0RHVfk5/HVj6vkkNr ZbdBcj4KgTAMIz52BJ6hfC0WUN6gJeZXMAFvP7MiKjs7KclJGUYX0Y/SjdzX4O10YJ5gVExB 8StuV+8NyCNnGEbrqFUK+nGGVoSwK9gDdSFxC60fYyqpYbSKHlTvzS2sFqE2Z0YADkbR7+5w h4uxmlGGETW9KJ/X3XpuNapLb4TgvXhrVg2iXC3zVBhGNGRQ81O3sNoIfDDJSbUzp6KIX7fQ Og9LIDaMoZJFoQpuYTWAeooaTZJFiZ/ubiUDqEmjaVqG0RwZ4Ay819VmlLTdMWWOkyIDfBHv nWAT6qJsQsswwpFB1467VMwg8BVs5RIZvcA3qV5rfwrbyYYRlCzSrCqF1Xcxh1bk9KCmkm7X 6wCyaZmmZRiNcUqUu5eBBeBHJNPcuCsYgYSWW9MaBL6K3SEMox69VHsDB5Gwso5NLaaH6uXh IBJkFlxqGF56qI6zcpaBplnFRC8yxLvV2zy6Y4xJblqGkSpGowh2t7DajAzstiKJmQwKeXDH aRWA67GEacPopzo3cACFLpijKiGyKLjU7fUooN5puyQ4L8NIkh2pbvK6EQWFWpxVCjgZ1VF3 l8V4DisCaHQf+6J6Vu5rYTWWbpM6DkbF+ysrl56IhT0YnU8GlTVeSnXVBUtkTil74q2n5dSI PxvzIBqdSw9qGFHZBPhxrERM6pmCKpe67zJ54BrS1ffQMKJgMmr86+5uU0CVQq34XpswAbiS 6kaVD6ECgYbRCeyGmpxWNmf9LVbWuO3IAZ/F20KsCKxAtbbMtWu0K1ng3XjbxzutuD6PmT/a lgzqUruIahfvN1FgnWG0EyOBC6gO5VmM+gaag6kD2B64De/dqAg8gBkljfZhNooxrDyP78I6 MnccE4CfoNQE98FeiuoDWUCdkVZywMeAJXjP3UHgUhTVbnQgGRRA9wrVd6lrgRnJTc0wajIN GdErz9clwEewJWBXsCty+7pdwUXgeRR8Z0ZLI2lywAmoA7r7HM2jJeDuic3MSIQRKBF0HdVq 9tWYtmUkxzTgV1SbL9YDX0aGd6MLyQCHAXPxehELKM3nVGBYYrMzuo0+4BTgBarPx8eAN2BL QAMZLX+Etw+io37fjLwzhtFKdgduoNpMsRH4KRYIalSQQ0mic6k+aVag2vFWZ8uImomofPFy qm+W85BWZR5soy4TgPOptm0VgSdRKRsrLWsMlR7gJJSgXHmebQC+joUrGAHJAPtR25M4CNwK HISl9xjhyQJzUIJ+pVE9D9yN6riZrcoIzUjgLGrHbW1AtgXzJhpBmY5speupPp8Woz6bo5Ka nNE5bA38AFVurKwAsQp1JZmZ2OyMtDMD5f+torqywhrgx8DUxGZndCQZpKr/heplonOH/BpW c8soMxk5axZTfb4U0LJwDrb8M1pIDngH1bFbzkm4HPgSsF1SEzQSZxtU5mU5tc+Rx1B5GPP+ GbExHjgDWEj13bOIAk8vwARXN7Et0rJfoPY5sRA4E/P+GQkyEvgk6lRS6266EbgM2B/LUexE csijfClyxNQ6B54FPoPVXzNSxBbAfwMvU33SOtUgrwOOwpYCnUAOOBL4I7Vj9grIu/wFZMsy jFQyHt1N51FbcBVQZ59PYp7FdmQGWtY9Qv3j+zi6eY1PaI6GEZrxwHuAf1IdIOic2EuBq4Cj UeKrkU76kDZ1JapDVUtQbQbuR5kQE5KZpmEMnSxaBl5L7YBBZzyOlg97YLauNJBDddPOQdpy veO2Hi0Lj8GW+kYH0YOqPnwHeJHasVxOIOE/UdTzjljeYpz0on3+KeAeFChcS5vKo8Ym/wu8 FrvBGB3OWJT4+meqS9q4xwBwB+rquxt2B28FOWAWSsG6Fe3zesdjI3ATahM3NonJGkaS9CBB 9FVUCrfexVJAmtdDqD3ZESiWx5Kvw5NFNqbDgAuBB6mvSTm2qQWl9+6BabyGASjp9SiUUD2f +nd5t8v8/1BV1N0wo30jepE96iPANdQPPakM8rwE2abGxD9loxaWw5ROxqHyNW9FQmwK9ZeD juF3KXAvsr3cgQJZVyJ7SzeRQx7aGcDrgQNKYxIK8q13zudRzt9fgN+gfbgK7V8jJZjASj8T 0YV3FHAIsAv+tqwi0sDmosabDwFPAE+jpWUnMRrYAdgZLdn2RRrnlvif3wW0X25F9sQ7UPt3 I6WYwGovhqOaSkeh2K29UIR9EAG2CRn456Ogx4eRQHsW2XDWIU2tEP20h0QWdTgajQzd01H9 8z1Kf2eUXh+G//mcR3FUDyIBdRPaHxuin7bRCkxgtTeTkVt9DspV3JvwzQoGUVWBxehino/6 Mz6LtLTlaGm5jHI9pyjJoiVwP1rK9aMl8AwknKaj3zm59FrYEILlSMu8F7gTeAD9LqMNMYHV OTiayE7Awah2l6OBjSP8sXaM+/nS3wISbiuQvWwZ8qBtRu7+POXA2HWlbYwqfe8IJGiGIwN4 LxKsk5DHrqc0/yzSFrNNznc1Err/Qra821BArpOUbLQ5JrA6m5GoNtMMtHzaHdl3dqH9S/Gu R8JoLlriPgI8h0q7rE9wXkYLMYHVfWRRCMQOKGByumtsgzSesaWRVJxXAWlLq5FG9yJaqjrj ceApFLdmmlMXYQLLcJNDAms85SXbFq7H7uHYk/pKowct/TKUtTen7MoGtJwcKA3HbuYsLZe4 Hi8tPV+GbGcr6L7QDKMO/w+3/bW4tfsTcgAAAABJRU5ErkJggg==